Cortical disease has emerged as a critical aspect of the pathogenesis of multiple sclerosis, being associated with disease progression and cognitive impairment. Most studies of cortical lesions have focused on autopsy findings in patients with long-standing, chronic, progressive multiple sclerosis, and the noninflammatory nature of these lesions has been emphasized. Magnetic resonance imaging studies indicate that cortical damage occurs early in the disease.

METHODS

We evaluated the prevalence and character of demyelinating cortical lesions in patients with multiple sclerosis. Cortical tissues were obtained in passing during biopsy sampling of white-matter lesions. In most cases, biopsy was done with the use of stereotactic procedures to diagnose suspected tumors. Patients with sufficient cortex (138 of 563 patients screened) were evaluated for cortical demyelination. Using immunohistochemistry, we characterized cortical lesions with respect to demyelinating activity, inflammatory infiltrates, the presence of meningeal inflammation, and a topographic association between cortical demyelination and meningeal inflammation. Diagnoses were ascertained in a subgroup of 77 patients (56%) at the last follow-up visit (at a median of 3.5 years).

RESULTS

Cortical demyelination was present in 53 patients (38%) (104 lesions and 222 tissue blocks) and was absent in 85 patients (121 tissue blocks). Twenty-five patients with cortical demyelination had definite multiple sclerosis (81% of 31 patients who underwent long-term follow-up), as did 33 patients without cortical demyelination (72% of 46 patients who underwent long-term follow-up). In representative tissues, 58 of 71 lesions (82%) showed CD3+ T-cell infiltrates, and 32 of 78 lesions (41%) showed macrophage-associated demyelination. Meningeal inflammation was topographically associated with cortical demyelination in patients who had sufficient meningeal tissue for.
study.

CONCLUSIONS
In this cohort of patients with early-stage multiple sclerosis, cortical demyelinating lesions were frequent, inflammatory, and strongly associated with meningeal inflammation. (Funded by the National Multiple Sclerosis Society and the National Institutes of Health.)

Supported by grants from the National Multiple Sclerosis Society (NMSS RG3185-B-3, to Dr. Lucchinetti) and the National Institutes of Health (1R01NS049577, to Dr. Lucchinetti, and P50NS38667, to Dr. Ransohoff).

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

We thank Patricia Ziemer for technical assistance, Linda Linbo for assistance in patient recruitment, and Dr. Gabriele DeLuca for editorial input on an earlier draft of the manuscript.

SOURCE INFORMATION
From the Departments of Neurology (C.F.L., B.F.G.P., R.F.B., S.F.R.), Laboratory Medicine and Pathology (J.E.P., B.W.S., C.G.), and Health Sciences Research (S.D.W., J.M.), Mayo Clinic College of Medicine, Rochester, MN; the Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute (N.M.M., R.M.R.), and the Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute (RMFR) — both at Cleveland Clinic, Cleveland; the Center for Brain Research, Medical University of Vienna, Vienna (H.L.); and the Department of Neuropathology, University Medical Center and Institute for Multiple Sclerosis Research, Hertie Foundation and University Medical Center, Georg-August University, Göttingen, Germany (W.B.).

Address reprint requests to Dr. Lucchinetti at the Department of Neurology, Mayo Clinic, 200 First St. SW Rochester, MN, 55905, or at lucchinetti.claudia@mayo.edu; or to Dr. Ransohoff at the Neuroinflammation Research Center, NC30, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, or at ransohr@ccf.org.

Access this article: Subscribe to NEJM | Purchase this article