Zinc regulates the dopamine transporter in a membrane potential and chloride dependent manner

Christian Pifl*, Alexandra Wolf, Patrick Rebernik, Harald Reither, Michael L. Berger

Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria

A R T I C L E I N F O

Article history:
Received 30 May 2008
Received in revised form 13 October 2008
Accepted 14 October 2008

Keywords:
Dopamine transporter regulation
Zinc
Host-cell specific
Membrane potential
Carrier-mediated release
Chloride

A B S T R A C T

The dopamine transporter (DAT), a membrane protein specifically expressed by dopaminergic neurons and mediating the action of psychostimulants and dopaminergic neurotoxins, is regulated by Zn2+ which directly interacts with the protein. Herein, we report a host-cell-specific direction of the Zn2+ effect on wild type DAT. Whereas low μmolar Zn2+ decreased dopamine uptake by DAT expressing HEK293 cells, it stimulated uptake by DAT expressing SK-N-MC cells. Inhibition or stimulation was lost in a DAT construct without the binding site for Zn2+. Also reverse transport was differentially affected by Zn2+. dependent on whether the DAT was expressed in HEK293 or SK-N-MC cells. Pre-treatment of DAT expressing cells with phorbol-12-myristate-13-acetate, an activator of protein kinase C, attenuated the inhibitory effect of Zn2+ on uptake in HEK293 cells and increased the stimulatory effect in SK-N-MC cells. Patch-clamp experiments under non-voltage-clamped conditions revealed a significantly higher membrane potential of HEK293 than SK-N-MC cells and a reduced membrane potential after phorbol ester treatment. Lowering chloride in the uptake buffer switched the stimulatory effect of Zn2+ in SK-N-MC cells to an inhibitory, whereas high potassium depolarization of HEK293 cells switched the inhibitory effect of Zn2+ to a stimulatory one. This study represents the first evidence that DAT regulation by Zn2+ is profoundly modulated by the membrane potential and chloride.

1. Introduction

The dopamine transporter (DAT) is a specific membrane protein in dopaminergic neurons and decisively involved in the function of neurons which use dopamine (DA) as neurotransmitter. Reuptake of DA by DAT regulates the extracellular DA concentration in brain regions with dopaminergic innervation. The important behavioural role of the DAT is demonstrated by the profound neurochemical and behavioural effects of cocaine which blocks the transporter, of amphetamine-like drugs which reverse its action, and of genetic deletion by targeted recombination (Pifl and Caron, 2002). The DAT may also play a role in the neurodegeneration of dopaminergic neurons, since various substrates of the DAT, including the natural substrate DA, have been shown to be neurotoxic (Uhl and Kitayama, 1993; Edwards, 1993; Miller et al., 1999; Kawai et al., 1998; Nass and Blakely, 2003). Regulation of the DAT might therefore have a broad impact on the physiology and pathophysiology of brain function.

The DAT is regulated by low μmolar concentrations of zinc ions (Richfield, 1993; Bonnet et al., 1994). Although basal concentrations of free extracellular Zn2+ are low in the brain, activity-dependent release of Zn2+ at specific glutamatergic synapses might lead to concentrations of more than 20 μM (Assaf and Chung, 1984; Vogt et al., 2000). For the striatum, the brain area with the highest density of DAT, an innervation by zinc-containing neuronal fibers has been demonstrated (Howell et al., 1989; Fredericsson et al., 2000). The regulation of DAT by Zn2+ ions is based on a direct molecular interaction with the transporter protein (Norregaard et al., 1998). Zn2+ ions promptly decrease DA uptake by interaction with defined histidines in two extracellular loops of the DAT protein (H193, H375). However, various substitutions of amino acid residues in the DAT (Y335A, K264A, D345A/N, D436A) have been shown to switch the inhibitory effect of Zn2+ to an activating one (Loland et al., 2002, 2004; Chen et al., 2004; Meinild et al., 2004). These mutations are located on intracellular loops and lead to lower uptake rates explained by disruption of intramolecular interactions which normally stabilize the transporter in the outward facing conformation; it was argued that Zn2+ would re-establish a conformational equilibrium similar to wild type by stabilizing the outward facing conformation and thereby restore substrate binding and translocation. However, in a study on DAT expressing Xenopus laevis oocytes, the modulation of transport by Zn2+ was explained by potentiation of an uncoupled chloride conductance which modulates the membrane potential of the cells (Meinild et al., 2004). It was suggested that, depending on the membrane potential being above or below the reversal potential of chloride, Zn2+ may stimulate or inhibit transport by increasing or inhibiting the driving force for uptake.

* Corresponding author. Tel.: +43 1 427768294; fax: +43 1 427768299.
E-mail address: christian.pifl@meduniwien.ac.at (C. Pifl).
Here, we show an unexpected host-cell-specific direction of the Zn$^{2+}$ effect on DA uptake by the human DAT wild type protein in mammalian cells. We stably expressed the DAT either in human embryonic kidney 293 cells (HEK293) or in human neuroblastoma SK-N-MC cells and surprisingly found opposite actions of Zn$^{2+}$ on DA uptake that is an inhibitory effect in HEK293 and a stimulatory action in SK-N-MC cells. A thorough investigation of this novel finding reveals that the direction of the Zn$^{2+}$ effect depends on the membrane potential and chloride distribution of the cells.

2. Methods

2.1. Cell culture

HEK293 and SK-N-MC cells were grown in minimum essential medium with Earle's salts and 1-glutamine, 10% heat-inactivated fetal bovine serum and 50 mg/l gentamicin on 100 mm tissue culture dishes (Falcon) at 37°C and 5% CO$_2$/95% air. The human DAT, human norepinephrine transporter (NET) or human DAT-H193K cDNA was stably expressed using methods as described (Pifl et al., 2004). Cells were selected with 0.8 g/l (HEK293 cells) or 1 g/l (SK-N-MC cells) geneticin in the medium. More than one cell clone of each, HEK293 and SK-N-MC cells, were used in the experiments.

2.2. Uptake of monoamines

Cells were seeded in poly-α-lysine-coated 24-well plates (1 x 105 HEK293 cells/well and 1.5 x 105 SK-N-MC cells/well) and, 1 day later, uptake was performed at 25°C for 2.5 min as described previously (Pifl et al., 2004). The uptake buffer consisted of (mmol/l): 4 Tris·HCl; 6.25 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES); 120 NaCl; 1.2 CaCl$_2$; 1.2 MgSO$_4$; 5 α-glucose; 0.5 ascorbic acid; pH 7.1. In experiments with various concentrations of potassium the buffer composition was the same except (mmol/l): 0 KCl and 34 α-glucose; 5 KCl and 20 α-glucose; 20 KCl and 5 α-glucose; 50 KCl and 5 α-glucose. In ion dependence experiments, chloride was replaced with isethionate. After incubation with buffer containing various concentrations of ZnSO$_4$ for 5 min, uptake was started by addition of tritium labelled DA, norepinephrine (NE) or 1-methyl-4-phenyl-pyridinium (MPP$^+$) at a final concentration of 10 μM. In experiments with phorbol esters, cells were pretreated with 0.5 μM of the active phorbol ester phorbol-12-myristate-13-acetate (PMA) or, as a negative control, with 0.5 μM of the inactive ester 4α-phorbol-12,13-didecanoate (4αPDD) in uptake buffer at 37°C for 20 min. Nonspecific uptake was estimated in the presence of 10 μM mazindol. For uptake inhibition experiments data of each separate experiment were fitted to the equation $f = \min + \frac{\max - \min}{1 + x^{IC_{50}}}$, “min” being nonspecific uptake, “max” is the uptake in the absence of inhibiting drug, x is the molar concentration of the inhibiting drug, and IC$_{50}$ is the drug concentration that inhibits 50% of specific uptake.

2.3. Superfusion

Cells were seeded onto poly-α-lysine-coated 5-mm-diameter glass coverslips in 96-well tissue culture plates and loaded with 6 μM [3H]MPP$^+$ (0.1 Ci/mmol) at 37°C for 20 min. Coverslips were transferred to small chambers and superfused with the same buffer as used in uptake experiments (25°C, 1.0 ml/min) as described (Pifl et al., 2004; Pifl and Singer, 1999). The radioactivity released during consecutive 4 min fractions was expressed as percentage of the total radioactivity present in the cells at the beginning of each fraction. Experiments with and without Zn$^{2+}$ were run in parallel in each superfusion session and therefore statistical differences between these conditions were analysed by paired Student’s t-test.

2.4. Binding

Binding on whole cells, seeded as described for uptake experiments, was performed in 24-well plates as described previously (Pifl et al., 1996). Cells were incubated on ice for 2 h in the same buffer as used in uptake experiments containing 2 nM [3H]-2-carboxyethoxy-3-(4-fluorophenyl)tropane ([3H]CFT). For binding to
membranes, membranes were prepared by lysis of cells with 2 mM Hepes, 1 mM EDTA, pH 7.6, centrifugation of the lysate at 31,000 × g for 20 min, and homogenisation of the pellet with a polytron in uptake buffer. After 2.5 min at 25 °C, and incorporation of tritium was determined as described under “Section 2.2.” Nonspecific uptake was estimated in the presence of 10 μM mazindol. Columns represent means of specific uptake ± standard error of three independent experiments, each in duplicates. *p < 0.05 vs. control by Student’s t-test.

2.5. Uptake into striatal synaptosomes

Male Sprague–Dawley rats were killed by decapitation. The brains were rapidly removed and immediately chilled in ice-cold 0.9% NaCl. Striata were dissected from the unfrozen brains on a cold-plate (−1 °C) and fresh crude synaptosomes were prepared and uptake performed as described previously (Pifl et al., 1993) with minor modifications. Tissue was initially homogenized in 10 volumes (g tissue/ml) and the final pellet resuspended in 7 volumes of ice-cold 0.3 M sucrose. Twenty-five μl of the synaptosomal suspension were added to 600 μl of the uptake buffer as described above (without MgSO4) and incubated with 1 μM [3H]DA at 25 °C for 2.5 min. Stop of the incubation by filtration and liquid scintillation counting was as described above for binding experiments. Nonspecific uptake was estimated in the presence of 10 μM mazindol. In the presence of 10 μM mazindol, uptake of 3H-chloride was determined as described under “Section 2.2.” Nonspecific uptake was estimated in the absence or presence of 10 μM ZnSO4 with 10 μM [3H]DA (A, D), 10 μM [3H]MPP+ (B) or 10 μM [3H]NE (C) in uptake buffer for 2.5 min at 25 °C, and incorporation of tritium was determined as described under “Section 2.2.” Nonspecific uptake was estimated in the presence of 10 μM mazindol. Columns represent means of specific uptake ± standard error of three independent experiments, each in duplicates. *p < 0.05 vs. control by Student’s t-test.

2.6. Patch-clamp experiments

About 6 × 10^5 HEK293 and 1.2 × 10^5 SK-N-MC cells were split into 35 mm tissue culture dishes two days before. The external (bathing) solution for recordings was essentially the uptake buffer with minor modifications (130 mM NaCl and 34 mM α-glucose) for obtaining the final osmolality of 300 mOsm/l. Patch pipettes were filled with (mmol/l): 20 KCl and 125 K-gluconate (130 KCl in current-clamp experiments), 0.1 CaCl2, 1.1 EGTA, 2 MgCl2, 4 Tris–HCl; 6.25 HEPS, pH 7.2, with an osmolality of 270 mOsm/l and patch electrodes pulled from borosilicate glass capillaries (G150F-8P, Science Products, Hofhem Germany) with a programmable Brown-Flaming micropipette puller (P-97; Sutter Instruments Co., USA) were heat-polished to a final tip resistance of 3–6 MΩ. Recordings were performed in the whole-cell configuration of the patch-clamp technique using an Axopatch 200B patch-clamp amplifier and the pClamp data acquisition system (Axon Instruments, Foster City, CA, USA) at ambient temperature (25 ± 2 °C) and clamping the cells to zero current or to the holding potential indicated. In voltage-clamp experiments test drugs were applied with a PTR-2000/DAD-12 drug application device (ALA Scientific Instruments Inc., Westbury, NY), which allows a complete exchange of solutions surrounding the cells under investigation within <100 ms; the cells were continuously superfused with bathing solution.

2.7. Uptake of 36Cl

Cells were seeded in poly-L-lysine-coated 12-well plates (1.9 × 10^5 HEK293 cells/well and 3.5 × 10^5 SK-N-MC cells/well, respectively) and, 2 days later, cells were once washed and incubated for 10 min at 30 °C with 200 μl uptake buffer (see above). Uptake was started with addition of 0.12 μCi 36Cl (sodium salt) in 100 μl in the absence or presence of DA and/or Zn2+ at a final concentration of 10 μM. After incubation for 5 min at 30 °C uptake was stopped by aspirating the incubation mixture and washing each well twice with 3 ml ice-cold buffer. The radioactivity remaining in each well was determined by incubating with 0.8 ml 1% sodium dodecyl sulphate and transferring this solution into scintillation vials containing 4 ml scintillation cocktail.

2.8. Materials

Media, sera and other tissue culture reagents were obtained from Life Technologies (Vienna, Austria), [7-3H]dopamine (22 Ci/mmol), (−)[7-3H]-norepinephrine (12 Ci/mmol) and [3H]MPP+ (79.9 Ci/mmol) were obtained from New England Nuclear GmbH (Vienna, Austria). 36Cl (14 mCi/g) from GE Healthcare (Buckinghamshire, UK), D-amphetamine-sulphate was kindly donated by SmithKline & French (Welwyn Garden City, Herts, UK), mazindol from Sandoz GmbH (Vienna, Austria). FMA and 4uPDD were purchased from Calbiochem, the other chemicals were from Sigma–Aldrich or Merck.

3. Results

Zn2+ inhibits DA uptake by the DAT expressed in HEK293 cells (Fig. 1A), but stimulates uptake by the DAT expressed in SK-N-MC cells in concentrations up to 30 μM (Fig. 1B). This is observed at least two clones, each of the cell lines stably expressing the human DAT. Up to 100 μM Zn2+ do not affect NE uptake by the closely related norepinephrine transporter (NET), neither in HEK293 (Fig. 1C) nor in SK-N-MC cells (Fig. 1D).

Zn2+ inhibits uptake by the DAT in HEK293 cells and stimulates uptake by the DAT in SK-N-MC cells, irrespective of whether dopamine (Fig. 2A), MPP+ (Fig. 2B) or NE (Fig. 2C) are used as substrates. Uptake is neither stimulated nor inhibited by Zn2+ in cells expressing a DAT construct in which the binding of Zn2+ is impeded by substitution of histidine 193 with a lysine (Fig. 2D).

Zn2+ inhibits DA-induced carrier-mediated release of tritium from DAT expressing HEK293 cells preloaded with [3H]MPP+ (Fig. 3A), but stimulates it slightly in SK-N-MC cells (Fig. 3B). In contrast to DA uptake, amphetamine-induced release from DAT expressing HEK293 cells is stimulated and not inhibited by Zn2+.
Here we show that this stimulation is much more pronounced in DAT expressing SK-N-MC cells (compare D to C in Fig. 3).

Differences in the action of proteins with identical amino acid sequence in different cellular hosts might be due to differences in posttranslational modifications in these cells. An established posttranslational modification of the DAT is phosphorylation (Vaughan et al., 1997; Huff et al., 1997). Therefore, we investigated if stimulation of protein kinase C with phorbol-12-myristate-13-acetate (PMA) might modify the regulatory effect of Zn$^{2+}$ in our cells. In fact, pre-treatment of the cells with 0.5 mM PMA as compared to pre-treatment with the inactive phorbol ester 4aPDD, attenuated the inhibitory effect of Zn$^{2+}$ in HEK293 cells and potentiated the stimulatory effect in SK-N-MC cells (Fig. 4).

In addition to translocating substrates, the DAT also binds cocaine and cocaine-derivatives. In binding experiments at 4 °C on whole cells expressing the DAT, Zn$^{2+}$ stimulated binding of the cocaine analogue [3H]CFT in both cell types, which is in agreement with the literature (Bonnet et al., 1994; Norregaard et al., 1998). By contrast, binding of [3H]CFT to membranes prepared from these cells was not affected by Zn$^{2+}$ at all (Fig. 5).

The main difference between the DAT in whole cells and in a membrane preparation is the membrane potential, to which the DAT is exposed only in intact cells. Therefore, we measured the membrane potential of DAT expressing SK-N-MC and HEK293 cells by patch clamping the cells to zero current. Under this condition the membrane potential of HEK293 cells (mean value ± SE, 12 cells: −61.8 ± 2.6 mV) was significantly more negative than that of SK-N-MC cells (−44.7 ± 3.6 mV, 20 cells; p < 0.005).

The modulation of DA uptake by Zn$^{2+}$ was explained by the potentiation of an uncoupled chloride conductance (Meinild et al., 2004). We therefore studied the accumulation of 36Cl in DAT expressing HEK293 cells (Fig. 6). Whereas in cells without DAT 36Cl incorporation was not affected, in DAT expressing HEK293 cells 36Cl uptake was significantly increased in the presence of DA, but was at control levels in the presence of both, Zn$^{2+}$ and DA. By contrast, in DAT expressing SK-N-MC cells 36Cl incorporation was only increased significantly by the combination of Zn$^{2+}$ and dopamine. After growing the cells in the presence of 36Cl for three days, 36Cl levels were lower in SK-N-MC than HEK293 cells (0.097 ± 0.028 vs. 0.22 ± 0.02 pmol/cell; p < 0.05).

Ion substitution experiments revealed a strong chloride dependence of the modulation of DA uptake by Zn$^{2+}$. Lowering the concentration of Cl$^{-}$ by substitution with isethionate significantly increased the inhibitory action of Zn$^{2+}$ on DA uptake in HEK293 cells (Fig. 7, left panels) and switched the stimulatory effect of Zn$^{2+}$ to an inhibitory effect in SK-N-MC cells (Fig. 7, right panels).

We now reasoned that the differing membrane potential of HEK293 and SK-N-MC cells might be the cause of the different direction of the Zn$^{2+}$ effect, and investigated, how membrane...
potential changes induced by altering the concentration of K⁺ in the assay buffer would influence the modulation of DA uptake by Zn²⁺. In fact, the Zn²⁺ effect on HEK293 cells could be switched from an inhibitory one at zero K⁺ to a stimulatory one at a concentration of 20 or 50 mM K⁺, and in SK-N-MC cells the depolarization of the cellular membrane by high K⁺ increased further the stimulatory effect of Zn²⁺ (Fig. 8).

Membrane depolarization by 50 mM K⁺ also made disappear differences between the two DAT expressing cell lines in the sensitivity of [³H]DA uptake to inhibition by mazindol: In SK-N-MC cells, mazindol blocks with lower potency (IC⁵₀ 0.235 μM) than in HEK293 cells (IC⁵₀ 0.101 μM; see Fig. 9A,B). In both cell lines, addition of 10 μM Zn²⁺ increased this potency to about the same value (0.055/0.052 μM). In HEK293 cells, simple depolarization by increasing [K⁺] from 5 to 50 mM leads to a similar uptake inhibition by mazindol as in SK-N-MC cells (Fig. 9C).

Transporter substrates induce inward currents in patch-clamp measurements on DAT expressing HEK293 cells (Sitte et al., 1998; Pifl et al., 2004). Zn²⁺ increases this inward current by about 67 ± 21 pA in 7 cells clamped to −30 mV (p < 0.02 by paired Student’s t-test, Fig. 10), but only insignificantly by 14 ± 11 pA if the same cells were clamped to −80 mV (difference between −30 mV and −80 mV condition: p < 0.03 by paired Student’s t-test). We could not reliably measure substrate-induced currents in DAT expressing SK-N-MC cells, presumably due to the lower expression of DAT per cell in these lines.

In order to examine the possibility that the modulation of the Zn²⁺ effect by the phorbol ester might be indirect via modulation of the membrane potential, we measured it under non-voltage-clamped conditions: pre-treatment of HEK293 cells expressing the DAT with 1 μM PMA depolarized 24 cells to a mean value ± SE of −50.1 ± 2.6 mV as compared to the −57.4 ± 1.8 mV of 20 cells pre-treated with 1 μM of the inactive ester 4αPDD (significance by t-test p < 0.05; pre-treatment time did not differ significantly between groups: 19.5 ± 2.7 min vs. 21.2 ± 3.9 min). This membrane depolarization was smaller than that induced by 50 mM K⁺: −47.7 ± 1.6 mV as compared to −58.9 ± 2.0 mV at 5 mM K⁺ (11 cells; p < 0.0001). Potential mechanisms of membrane depolarization by phorbol esters might include inhibition of potassium channels (Boland and Jackson, 1999) which were found in HEK293 and SK-N-MC cells (Yu and Kerchner, 1998; Lee et al., 1993) or a decrease of the activity of Na⁺/K⁺-ATPase by protein kinase C (McDonough and Farley, 1993).

Could these findings of a membrane potential dependent modulation of the Zn²⁺ effect on dopamine transport also have relevance in vivo? There is evidence for presynaptic glutamate receptors on dopaminergic nerve terminals in the striatum (Krehbiel et al., 1991; Mercuri et al., 1992; Paquet and Smith, 2003). A depolarizing effect upon activation of these receptors by glutamate might modulate the Zn²⁺ effect on DA uptake. In fact, in in vitro experiments on striatal synaptosomes 1 mM glutamate attenuated the inhibitory effect of Zn²⁺ on DA uptake (Fig. 11, left panels). This attenuation of the Zn²⁺ effect by glutamate was not due to an unspecific interaction of the amino acid with the zinc ions since in DAT-transfected HEK293 cells, which lack glutamate receptors and are therefore unlikely to be depolarized by glutamate, 10 μM Zn²⁺ blocked DA uptake in presence of 1 mM glutamate to the same extent as in the absence of glutamate (Fig. 11, right panels).

4. Discussion

Our findings demonstrate that the polarization of the cell membrane and the cellular chloride distribution into which the DAT is embedded, profoundly affect the regulation of the DAT by Zn²⁺. Whereas at the more negative membrane potential of the DAT expressing HEK293 cells Zn²⁺ inhibited uptake, attenuation of the membrane potential in DAT expressing HEK293 cells by high extracellular potassium resulted in a stimulatory effect of Zn²⁺ on DA uptake, and this stimulatory effect was even stronger at the still less polarized membrane of DAT expressing SK-N-MC cells. Lowering the extracellular chloride concentration increased the inhibitory effect of Zn²⁺ in HEK293 cells and shifted the stimulatory effect in SK-N-MC to an inhibitory one. Also the reduced inhibitory potency of Zn²⁺ after pre-treatment with the phorbol ester PMA might not be due to posttranslational modification of the DAT protein by phosphorylation, as initially hypothesized, but caused by a weakening effect of PMA on the membrane potential independent of the DAT. The opposite Zn²⁺ effect in HEK293 and SK-N-MC cells was obviously induced by interaction of Zn²⁺ with the well characterized histidins in the DAT (Norregaard et al., 1998), since both, the inhibitory effect in HEK293 and the stimulatory effect in SK-N-MC cells were abolished in cells expressing the NET which has no matching histidins as well as in cells expressing a mutant DAT with one of the critical histidins removed.

Since the translocation process of the DAT is electrogenic, DA uptake depends on the membrane potential. In DAT expressing oocytes held under voltage clamp, hyperpolarization increased the rate of DA accumulation (Sonders et al., 1997). That Zn²⁺ changes DA uptake by changing the membrane potential was recently suggested in another study on DAT expressing oocytes:
Fig. 5. Effect of Zn$^{2+}$ on binding of [3H]-2β-carbomethoxy-3β-(4-fluorophenyl)tropane ([3H]CFT) in different cellular hosts stably expressing the DAT. Cells stably expressing the DAT (left) and seeded in 24-well plates or membranes prepared from these cells (right) were incubated in uptake buffer containing 2 nM [3H]CFT for 2 h in the absence or presence of 10 μM ZnSO$_4$ at 4°C, and binding of tritium was determined as described under “Section 2.4”. Columns represent means of binding ± standard error of three independent experiments, each in duplicates. *p < 0.05 vs. control by Student’s t-test.

Fig. 6. Effect of Zn$^{2+}$ and DA on the uptake of chloride. HEK293 cells (A,B) or SK-N-MC cells (C,D) in the absence (A,C) or the presence of the stably expressed human DAT (B,D) were seeded in 12-well plates and incubated in the absence or presence of 10 μM ZnSO$_4$ and/or DA in uptake buffer with 0.12 μCi 36chloride for 5 min at 30°C, and incorporation of 36chloride was determined as described under “Section 2.7”. Columns represent means ± standard error of six to seven independent experiments, each in triplicates. Control uptake was 12170 ± 970, 8105 ± 525, 4967 ± 666, and 6492 ± 392 pmol/min/106 cells for A–D respectively. *p < 0.05 vs. control by paired Student’s t-test.
Zn$^{2+}$ inhibited uptake in non-voltage-clamped oocytes, but did not affect uptake under voltage-clamped conditions (Meinild et al., 2004). The authors explained both, inhibition by Zn$^{2+}$ of wild type, but stimulation by Zn$^{2+}$ of a mutated DAT (Y335A) with a tonic leak current constitutively depolarizing the membrane, by facilitation of a DA-induced chloride conductance (Loland et al., 2002; Meinild et al., 2004). However, for artificial mutants of the DAT other mechanisms such as a distorted conformation cannot be excluded as a cause for the peculiar uptake stimulation by Zn$^{2+}$. By contrast, our findings of a stimulatory effect of Zn$^{2+}$ on uptake by wild type DAT in cells with a constitutively low membrane potential (DAT/SK-N-MC cells) and presumably low intracellular chloride concentration or with a depolarized membrane (50 mM K$^+$–treated DAT/HEK293 cells) demonstrate that membrane potential and chloride distribution are in fact the key determinants for Zn$^{2+}$ modulation of the DAT wild type protein as well.

Our 36Cl$^{-}$ experiments support the contention that Zn$^{2+}$-induced chloride flux modulates DA transport (Meinild et al., 2004). In addition to differences in membrane potential, differences in intracellular Cl$^{-}$ concentration between HEK293 and neuronal SK-N-MC cells due to for example differences in Na$^+$–K$^+$–2Cl$^{-}$ and neuronal specific K$^+$–Cl$^{-}$ co-transporters (Stein et al., 2004), might contribute to differential effects of a Cl$^{-}$ conductance on Cl$^{-}$ flux between the cellular hosts of the DAT. Increased 36Cl$^{-}$ uptake in the presence of DA in DAT expressing HEK293 cells might be due to stoichiometric co-transport of Cl$^{-}$. This DA-induced influx was no longer detectable in the presence of Zn$^{2+}$. At the applied concentration (10 μM) Zn$^{2+}$ blocks only about 20% of DA transport, the major part of co-transported Cl$^{-}$ should still flow into the cells. If we assume that Zn$^{2+}$, in addition to its effect on DA transport, leads to the opening of a Cl$^{-}$ conductance associated with the DAT, we can expect Cl$^{-}$ efflux at the negative membrane potential and presumably higher intracellular Cl$^{-}$ of HEK293 cells and consequently a lower Cl$^{-}$ uptake in the presence of DA and Zn as compared to DA alone. A depolarizing effect of this Cl$^{-}$ efflux could explain the lower DA uptake in the presence of Zn$^{2+}$. In the less polarized SK-N-MC cells with likely lower intracellular Cl$^{-}$, opening of the Cl$^{-}$ conductance by Zn$^{2+}$ in the presence of DA might lead to Cl$^{-}$ influx and this influx was detected in our experiments with 36Cl$^{-}$ (Fig. 6D). Influx of Cl$^{-}$ would hyperpolarize the cells and stimulate DA uptake in SK-N-MC cells. This Cl$^{-}$ influx would be shifted to a Cl$^{-}$ efflux by lowering Cl$^{-}$ concentration in the uptake buffer and in fact, substitution of Cl$^{-}$ by isethionate switched the stimulatory effect of Zn$^{2+}$ on DA uptake in SK-N-MC cells to an inhibitory one. The fact that we could not detect significant effects of DA on (stoichiometric) Cl$^{-}$ uptake in SK-N-MC cells could be due to the more than fourfold lower expression level of the DAT in these cells.

Our voltage-clamp experiments parallel our uptake experiments in as far as Zn$^{2+}$ clearly stimulated the transporter current...
induced by DA at -30 mV and increased uptake in cells with low membrane potential, whereas Zn^{2+} affected the current at -80 mV only insignificantly and inhibited uptake in cells with high membrane potential. That Zn^{2+} did not decrease the DA-induced inward current at -80 mV might be due to the additional inward current by Cl^{-} efflux at -80 mV.

Differential effects of Zn^{2+} on carrier-mediated release in the two DAT expressing cell lines can be explained as follows. DA-induced release follows the concept of facilitated exchange-diffusion (Fischer and Cho, 1979): uptake of DA provides inward-facing...
transporter sites for reverse transport of preloaded substrate; consequently, the inhibition of uptake of DA by Zn2+ in HEK293 cells results in inhibition of DA-induced release whereas in SK-N-MC cells, we observe parallel stimulation of both processes. By contrast, amphetamine-induced release via the DAT has a different mechanism (Pifl and Singer, 1999): amphetamine induces release mainly by inducing an inward current of sodium which increases sodium at the inner face of the transporter and thereby reverses transport (Sitte et al., 1998; Khoshbouei et al., 2003). The additional release induced by concomitant action of Zn2+ fits with the additional inward current during amphetamine plus Zn2+ as measured in patch-clamp experiments (Pifl et al., 2004; Meimild et al., 2004). The even stronger stimulation of amphetamine-induced release by Zn2+ in SK-N-MC cells may be due to the suggested inward flux of chloride, which would reduce the chloride gradient. A reduced chloride gradient was shown previously to cause carrier-mediated release in DAT expressing cells (Pifl and Singer, 1999; Pifl et al., 1997).

Binding of uptake inhibitors to the DAT was found to be stimulated by low μmolar concentrations of Zn2+ in several studies (Richfield, 1993; Bonnet et al., 1994; Norregaard et al., 1998). We observed the stimulatory effect of Zn2+ only in intact neurons and not in vivo in HEK293 cells. It seems that under our assay condition, the concentration gradient of ions of intact cells and/or their membrane potential is essential for the conformational change of the DAT by Zn2+, which leads to a more favourable configuration for binding of the cocaine analogue. Furthermore, we found that also in uptake inhibition experiments the interaction of mazindol with the DAT and its modulation by Zn2+ was regulated by the membrane potential. Mazindol had a two-fold lower potency as uptake-blocker in SK-N-MC cells than in HEK293 cells. The membrane potential. Mazindol had a two-fold lower potency as the cocaine analogue. Furthermore, we found that also in uptake inhibition experiments the interaction of mazindol with the DAT and its modulation by Zn2+ was regulated by the membrane potential. Mazindol had a two-fold lower potency as uptake-blocker in SK-N-MC cells than in HEK293 cells. The membrane potential. Mazindol had a two-fold lower potency as uptake-blocker in SK-N-MC cells than in HEK293 cells. The membrane potential.

In conclusion, we have shown that the influence of Zn2+ on the DAT critically depends on the membrane potential and chloride distribution. The DAT decisively regulates the sphere of influence and lifetime of released DA beyond the synapse (Cragg and Rice, 2004). Released DA enacts inhibitory feedback mechanisms by inhibiting DA synthesis and release and by stimulating DA reuptake, all these effects mediated by stimulation of presynaptic D2 receptors (Elsworth and Roth, 1995; Cass and Gerhardt, 1994; Meiergerd et al., 1993). The voltage-dependence of the Zn2+ effect on DA reuptake would provide another negative feedback for dopaminergic neurotransmission: DA exocytotically released from depolarized nerve endings, depolarized either by propagation of action potentials down the axon or by excitatory neurotransmitters, will be taken up more efficiently by the DAT stimulated by Zn2+ under depolarizing conditions. On the other hand, if Zn2+ stimulated the DAT under the conditions of lowered membrane potential, such as in pathologically impaired DA neurons, it might aggravate neurodegeneration by increasing the uptake of potentially neurotoxic substrates (including DA). This mechanism may be a factor in Parkinson’s disease where Zn2+ levels have indeed been found to be increased in those brain areas (substantia nigra, striatum; Dexter et al., 1991) bearing the brunt of the neurodegenerative process.

References

