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Opioids and central sensitisation: II. Induction and reversal
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Abstract

Opioids are powerful analgesics when used to treat acute pain and some forms of chronic pain. In addition, opioids can pre-empt

some forms of central sensitization [Sandkühler and Ruscheweyh, Eur. J. Pain, in press, doi:10.1016/j.ejpain.2004.05.012]. Here we

review evidence that opioids may also induce and perhaps reverse some forms of central sensitization.

� 2004 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All
rights reserved.
1. Opioid-induced hyperalgesia

During the last years, it has become increasingly clear

that opioids can induce central sensitization, aggravat-

ing preexisting pain or causing pain by themselves. Case

studies reported that opioids can actually increase pain

in some patients, often associated with a modification
of the pain character and an extension of the affected re-

gion (Devulder, 1997; Wilson and Reisfield, 2003). This

phenomenon has been reproduced in experimental set-

tings in both humans and rodents, where thermal hyper-

algesia, mechanical allodynia and increased pain

behaviour in the formalin test are manifest not only dur-

ing opioid withdrawal, but also during ongoing opioid

administration and can last for several days (Li et al.,
2001; Vanderah et al., 2001b; Angst et al., 2003). Opi-

oid-induced hyperalgesia also occurs after intrathecal

administration, demonstrating that activation of spinal

opioid receptors is sufficient (Mao et al., 1994).
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The mechanisms and signal transduction pathways

that mediate opioid-induced hyperalgesia include activa-

tion of NMDA receptors and protein kinase C (PKC),

activation of facilitatory supraspinal loops, upregulation

of spinal dynorphin and apoptosis of spinal dorsal horn

neurons (Vanderah et al., 2001a; Mao, 2002; Mao et al.,

2002b). These mechanisms are very similar to those of
both opioid tolerance and neuropathic pain, which has

important implications for the understanding and treat-

ment options of these states. First, it has been proposed

that apparent behavioural tolerance to the antinocicep-

tive effects of opioids may in fact be the result of opi-

oid-induced hyperalgesia (Mao, 2002). While a true

pharmacodynamic tolerance can be treated by increas-

ing opioid doses, this will worsen the opioid-induced
hyperalgesia that, in turn, requires dose reduction. Sec-

ond, if opioids are able to activate the same signal trans-

duction pathways as neuropathic pain, administration

of opioids during or after nerve injury may facilitate, in-

stead of pre-empt, the development of neuropathic pain

(Mao, 2002). However, understanding of the mecha-

nisms of opioid-induced hyperalgesia may disclose vari-

ous targets to decrease opioid-induced central
sensitization, thereby potentiating opioid analgesia and
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preventing tolerance and cross-talk to neuropathic pain

mechanisms.

Opioid-induced hyperalgesia, tolerance and neuro-

pathic pain are all prevented by application of NMDA

receptor antagonists (Mao et al., 1994; Whiteside and

Munglani, 2001; Laulin et al., 2002). Opioids are able
to potentiate the actions of glutamate at NMDA recep-

tors by a PKC-dependent pathway, probably involving

increased open probability, reduction of the Mg2+ block

and recruitment of NMDA receptors to the membrane

(Chen and Huang, 1991; Chen and Huang, 1992; Martin

et al., 1997; Lan et al., 2001). It has been hypothesized

that this occurs also at the primary afferent terminal,

leading to increased transmitter release (Ossipov et al.,
2003). In addition, chronic opioid treatment leads to a

downregulation of spinal glutamate transporters, pre-

sumably enhancing glutamate availability at spinal

NMDA receptors (Mao et al., 2002a). On the other

hand, opioids stimulate the expression of PKC in dorsal

horn and its translocation to the membrane by an

NMDA receptor-dependent pathway (Mayer et al.,

1995; Mao et al., 1995), suggesting that a feedforward
interaction between NMDA receptors and PKC is initi-

ated by opioids. Consistently, PKCc knockout mice do

not develop opioid-induced hyperalgesia (Zeitz et al.,

2001). Furthermore, chronic morphine exposure leads

to NMDA receptor mediated neurotoxicity, causing

apoptosis of inhibitory dorsal horn neurons that is at

least in part responsible for opioid-induced hyperalgesia

(Mao et al., 2002b).
These results provide a rationale for combining opi-

oids with NMDA receptor antagonists in the treatment

and prevention of pain. Ketamine was able to prevent

opioid-induced hyperalgesia in a human experimental

paradigm (Angst et al., 2003). In patients, intraoperative

combination of opioids with subanalgetic doses of keta-

mine resulted in reduced postoperative pain scores

(Suzuki et al., 1999; De Kock et al., 2001). It remains
to be determined if the beneficial effect of this combina-

tion extends to neuropathic pain states.

In addition, it has been shown that a facilitatory

supraspinal loop involving the rostroventral medulla

takes part in opioid-induced hyperalgesia and tolerance

and in neuropathic pain (Ossipov et al., 2000; Vanderah

et al., 2001a). This descending facilitation induces an in-

crease in spinal dynorphin content (Wang et al., 2001;
Gardell et al., 2002). Dynorphin, an endogenous j-opi-
oid receptor agonist that was originally thought to be

antinociceptive, was shown to exert non-opioid pronoc-

iceptive actions by potentiating NMDA receptors, facil-

itating release of excitatory transmitters and increasing

intracellular Ca2+ levels (Lai et al., 2001). Consistently,

tactile allodynia evoked by spinal dynorphin administra-

tion is blocked by NMDA receptor antagonists but not
by naloxone (Vanderah et al., 1996). Dynorphin antise-

rum prevents opioid-induced hyperalgesia, tolerance
and neuropathic pain in the rodent but has not been

tested in humans (Vanderah et al., 2000; Wang et al.,

2001).

How do opioids exert inhibitory effects, and how do

they excite and sensitize spinal neurons? It has been

shown that opioid receptors are coupled to both pertus-
sis toxin (PTX) sensitive inhibitory G-proteins (Gi/Go)

and cholera toxin (CTX) sensitive stimulatory G pro-

teins (Gs), so that the relative coupling proportions, to-

gether with binding affinity and receptor efficacy,

determine the net action of the opioid (Fan et al.,

1993; Fan and Crain, 1995). It has been suggested that

under resting conditions, the majority of opioid-recep-

tors are Gi/Go-coupled but that Gs-coupled receptors
are effective at lower agonist concentrations, explaining

the observation that exceedingly low doses of opioids

acutely induce hyperalgesia while ‘‘normal’’ doses in-

duce analgesia (Kayser et al., 1987; Shen and Crain,

2001). The coupling of opioid receptors to Gs can be

enhanced by interaction of the receptor with the

membrane-associated glycolipid GM1 ganglioside (Wu

et al., 1997). Interestingly, chronic opioid exposure in-
creases GM1 ganglioside levels (Wu et al., 1995) and

thus presumably promotes excitatory opioid actions.

Substances that reduce the interaction between GM1

ganglioside and the opioid receptor, like the non-toxic

B-subunit of CTX and the neuraminidase inhibitor osel-

tamivir, block low-dose morphine hyperalgesia and

morphine tolerance and withdrawal hyperalgesia

and potentiate and prolong morphine analgesia (Shen
and Crain, 2001; Crain and Shen, 2004). Similar results

have been obtained with ultra-low-dose naltrexone that

presumably has a higher binding affinity for Gs- than for

Gi/Go-coupled receptors (Crain and Shen, 2001). Excita-

tory opioid receptors seem to be less prone to desensiti-

zation than inhibitory opioid receptors (Crain and Shen,

2001). Thus, selective desensitization of inhibitory opi-

oid receptors during continuous opioid application or
a shift in the proportions of Gs versus Gi/Go-coupled

receptors may lead to prevalence of stimulatory opioid

effects and promote opioid-induced central sensitization.

Identification of substances suitable for clinical use that

selectively block excitatory opioid actions while retain-

ing inhibitory opioid effects promises to greatly enhance

the efficacy of the treatment of pain by opioids.
2. Reversal of central sensitization by opioids

Activity-dependent, long-lasting increase in efficacy

at synapses between primary afferent C-fibres and noci-

ceptive spinal neurons, e.g., NK1 receptor expressing

neurons in lamina I of the spinal dorsal horn, is a cellu-

lar model of central sensitization (Sandkühler, 2000;
Ikeda et al., 2003; Sandkühler and Ruscheweyh, in

press). Depotentiation of an established long-term
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potentiation (LTP) at nociceptive synapses is therefore a

potential cellular mechanism of reversal of central sensi-

tisation. Synaptic depotentiation or long-term depres-

sion (LTD) is often accomplished by stimuli very

similar to those that induce LTP, and the outcome

seems to essentially depend on concomitant circum-
stances, especially on the rise of intracellular calcium

achieved during the stimulation (Lisman, 1989; Artola

and Singer, 1993). Opioids interfere with the intracellu-

lar calcium level in a complex way, activating and/or

inhibiting voltage-gated calcium channels, NMDA

receptors, intracellular calcium stores and capacitive cal-

cium entry (Jin et al., 1992; Jordan and Devi, 1998; Quil-

lan et al., 2002). It can therefore be hypothesized that
opioids, that are able to induce central sensitization as

discussed above, may also reverse central sensitization

under certain conditions. Preliminary data from our

laboratory indicate that the clinically used l-opioid
receptor agonist remifentanil is indeed capable of depo-

tentiating LTP at nociceptive synapses (Brechtel et al.,

2001). In contrast, in a behavioural paradigm, remifent-

anil did not reverse the secondary allodynia induced by
a heat injury that is generally thought to be a sign of

central sensitization (Nozaki-Taguchi and Yaksh,

2002). As opioids are widely used and safe in the clinical

application, their potential for reversal of central sensi-

tization merits further investigation.
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