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Many new therapies have become available for multiple sclerosis patients during the last decade. They are
mainly effective in the early relapsing stage of the disease. Despite this undisputed progress, there are still
major deficits in the treatment of the patients. Effective anti-inflammatory treatments profoundly decrease
disease activity, although this may occur on the expense of a partially impaired immune surveillance of the
central nervous system. Furthermore, the clinical outcome of recent trials does not always meet the
expectations of the neuroimmunological community. This suggests that preclinical testing in experimental
models, although useful and necessary, has its limitations. For treatment of the progressive stage of the
disease blood brain barrier penetration of drugs appears to be one crucial issue. Additionally, little is known
on the immunological mechanisms of slow burning inflammation present in the brain of patients with
progressive MS. Finally, it is suggested that neuroprotective strategies, which target mitochondrial injury and
its downstream effects on neurons and axons are promising future therapeutic options.
ll rights reserved.
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1. Introduction

Multiple sclerosis is a chronic inflammatory disease of the central
nervous system, which results in the formation of focal demyelinated
plaques in the white matter with partial axonal preservation [1]. In
most patients disease starts with a relapsing remitting course, which
is followed by a secondary progressive phase. In patients with primary
progressive disease the relapsing stage of the disease is missed and
patients show disease progression from the onset [2]. It is generally
believed that inflammation starts the disease and drives demyelin-
ation and neurodegeneration. Thus, treatments targeting the inflam-
matory reaction are widely used [3]. They are mainly effective in the
relapsing stage, and their efficacy seems to be related to their potency
to suppress inflammation [4,5]. Interestingly, however, inflammatory
components, which were thought to be perfect targets on the basis of
our understanding of MS, have failed in clinical trials [6], while other
targets, which were not thought to be important in MS pathogenesis,
emerged to be attractive for therapy [7]. Furthermore, when patients
enter the progressive phase of the disease, anti-inflammatory or
immunomodulatory treatments become increasingly ineffective.
These observations raise a number of fundamental questions, which
can at least in part be addressed through studies of the pathology of
the disease. Thus the nature of the inflammatory reaction in the brain
and spinal cord has to be re-defined and the evidence for
inflammation, being the driving force of the disease at all stages has
to be reviewed. Finally, a deeper knowledge on the mechanisms of
tissue injury in multiple sclerosis lesions could provide new clues on
targets for neuroprotection.

2. Therapies targeting inflammation

There is no doubt that the inflammatory reaction in multiple
sclerosis is dominated by lymphocytes and macrophages or activated
microglia [1]. The global composition of inflammatory infiltrates is
quite similar to that seen in experimental autoimmune encephalo-
myelitis (EAE) and in this experimental model inflammatory
demyelination is induced, which in many respects resembles that
seen inMS [8]. Thus, in the prevailing view inflammation inMS equals
that seen in EAE. This implies that therapies, developed in EAE should
also have a beneficial effect in MS patients. Although this is the case
for some therapies, such as glatiramer acetate, ß-interferone,
natalizumab and others, perfect candidates, validated in EAE models
failed. Examples for such failure are treatment with antibodies or
reagents against CD4, against Il12/23 p40 [6] or against tumor
necrosis factor alpha [9]. Thus, the nature of the inflammatory
response between MS and EAE appears in part to be different, even,
when the basic composition of lesion infiltrates by T-cells, B-cells and
macrophages is essentially similar. One major difference is that in MS,
in contrast to EAE Class I MHC restricted CD8 positive T-cells dominate
the lymphocytic infiltrates at all stages of lesion formation and disease
[10]. These cells in addition show themost profound and reproducible
clonal expansion [10,11], suggesting that these are the T-cells in MS
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patients, which are pathogenetically driven by a specific antigen [12].
This is different from most EAE models, where inflammation is
mediated by Class II restricted CD4+T-cells [3]. Whether the CD8+T-
cells drive disease and lesions in MS patients, is so far not proven. It
may, however, become important in the future to test anti-
inflammatory therapies not only in models of CD4+ T-cell, but also
of CD8+ T-cell driven brain inflammation.

An unexpected finding in MS therapies was the pronounced
treatment effect of Rituximab, a monoclonal antibody that targets B-
lymphocytes [7,13]. B-lymphocytes are minor components of the
inflammatory infiltrates in the lesions [14] and it is thus unlikely, that
a blockade of these cells directly suppress the local inflammatory
response. B-cells, however, besides other functions are potent antigen
presenting cells and the elimination of B-cells also suppresses T-cell
mediated immune responses and disease [15]. An alternative
explanation for the therapeutic effectiveness of anti-B-cell therapy
may be that killing B-cells also eliminates Epstein Barr Virus (EBV)
infected cells. Since epidemiological data suggest a role of EBV in the
induction of the disease [16] the elimination of this virus from the
body may explain a therapeutic effect of B-cell directed therapies.

3. Therapeutic prospects for the progressive stage of the disease

It is an urgent problem in MS research to explain the failure of
current treatment in patients, who have entered the progressive stage
of the disease. Currently the most frequently proposed explanation is
that the disease starts with inflammation, but with time converts into
a neurodegenerative disease, which progresses independently from
inflammation [17]. Pathological studies do not support this concept.
They show that in patients with progressive disease pronounced
inflammation is seen in the brain and spinal cord, which in
quantitative terms (concerning T-cells, B-cells and macrophages) is
quite similar to that seen in the early relapsing stage of the disease
[14]. Thus, inflammation is unequivocally present, but does it drive
the disease?

One observation, suggesting an active role of inflammation in the
induction of tissue injury, is the highly significant correlation between
the extent of inflammation and of active axonal degeneration [14].
The other important observation is that in some patients inflamma-
tionmay decrease to levels seen in agematched controls. Interestingly
in these patients also acute axonal injury declines to that seen in
controls [14]. Both of these observations suggest that inflammation is
important in driving neurodegeneration, but they are not the final
proof. Ultimately it has to be shown that therapies, which stop
inflammation in the nervous system, also stop the progressive disease
process. This has so far not been achieved and there are several
potential explanations for this unsatisfactory situation.

First, it seems that in the progressive stage of the disease
inflammation is no longer induced by active invasion of inflammatory
cells from the circulation into the brain. Although even in the
progressive phase there is increased blood brain barrier permeability
compared to that seen in the normal brain, the blood brain barrier
damage is mild and apparently not reflected by gadolinium
enhancement in magnetic resonance imaging. In addition, brain
inflammation is frequently encountered in the lesions of patients with
progressive MS, which is not associated with protein leakage through
the blood brain barrier or the expression of markers for increased
trans-endothelial transport [18]. The formation of lymph follicle like
structures in the meninges, which can be seen in the brain of patients
with progressive MS [19], also supports the view that the inflamma-
tory response is compartmentalized within the central nervous
system. In such a situation, anti-inflammatory or immunomodulatory
drugs would have to be designed, which can pass the intact blood
brain barrier in an amount, which is sufficient to exert their effects.
This does not seem to be the case for most drugs currently used for MS
therapy. Thus, from a theoretical point of view, intrathecal anti-
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inflammatory or chemotherapy is an attractive option for treatment of
patients with progressive MS, in a similar way as it is currently used
for central nervous system prophylaxis in patients with leukemia or
lymphomas (in particular primary CNS lymphomas) [20,21]. Howev-
er, such treatments are associated with adverse effects on the CNS
tissue itself, which may even be more profound in the pre-damaged
nervous tissue of MS patients. Whether intrathecal therapies with
specific monoclonal antibodies–such as for instance anti-CD20
antibodies [22]–may become a future option is currently unresolved.

An alternative explanation could be that the functional state of
inflammatory cells within the brain lesions is different from that,
which allows the cells to enter the brain and start the inflammatory
process. Since a slow burning inflammatory process, as it is typically
seen in the brains of patients with progressive MS, is currently not
reproduced in experimental models, little is known on the activation
and functional state of inflammatory cells in this condition. Further
research is urgently needed, which defines the functional state of
inflammatory cells within the brain in progressive MS and identifies
new potential targets for therapy.

The alternative for treatment in progressive MS is to develop
neuroprotective and repair strategies. Although many different
immunological mechanisms can induce damage in oligodendrocytes,
myelin and axons [23], there seems to be one mechanism, which is
particularly promising as a target for therapy. Currently the
mechanism, which can best explain chronic tissue injury in MS
lesions in the progressive stage is mitochondrial injury leading to a
state of “virtual hypoxia” [24,25]. Such a mechanism satisfactorily can
explain key characteristics of the lesions, including demyelination and
oligodendrocyte death [26], preferential destruction of thin axons
[27,28], impairment of remyelination and increased susceptibility of
the target tissue in the chronic progressive stage of the disease [29]. In
particular, mitochondrial impairment in axons leads to ionic imbal-
ance in the course of action potential propagation, resulting in
increased axoplasmic calcium concentration and axonal degeneration.
This is further amplified by the action of excitatory amino acids, such
as glutamate and aberrant expression of Ca-channels in the
membrane of dystrophic axons. Blockade of these mechanisms is
neuroprotective in experimental models, not only in MS like
inflammatory disease but also in ischemia [27]. First clinical studies
in MS patients have been initiated to assess the feasibility of such
therapeutic strategies in patients. Whether the beneficial clinical
effects, seen in patients treated with 4-aminopyridine, a potassium
channel blocker [30], are due to neuroprotection or just reflect a
symptomatic functional improvement is currently unresolved.

In multiple sclerosis lesions mitochondrial injury is associated
with T-cell and B-cell inflammation and microglia or macrophage
activation [25]. Pro-inflammatory cytokines may induce mitochon-
drial injury in vitro [31] and reactive oxygen or nitric oxide species
interact with proteins of the mitochondrial respiratory chain, leading
to energy deficiency [28]. Oxidised and nitrosylated proteins and
lipids have been found in active MS lesions, suggesting radical
mediated injury [32,33]. The mechanisms of radical production in MS
lesions are currently unresolved, but myeloperoxidase, produced by
microglia cells [34,35] as well as iron accumulation within the human
brain, which is even more pronounced in MS lesions, may play a role
[36]. Further research is needed to test a potential role of radical
scavengers in neuroprotection in MS.

4. Conclusions

Currently a large number of new therapies are tested in multiple
sclerosis patients in clinical trials. Most of them target the inflamma-
tory component of the disease and have been developed and pre-
clinically tested in models of EAE. Outcomes of recently completed
trials show variable success of this strategy, suggesting that the
mechanisms of inflammation between EAE and MS are similar in
on and tissue injury in multiple sclerosis: What are the targets for
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many, but different in important aspects. A key issue for the treatment
of progressive MS is that in contrast to the situation in relapsing MS
therapies have to be designed, which reach the pathological process in
sufficient concentration within the brain behind a partially closed
blood brain barrier. Such therapies should target both, the inflamma-
tory as well as the neurodegenerative component of the disease.
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