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Abstract Multiple sclerosis (MS) is a chronic inflammatory,
demyelinating disease of the central nervous system, which
starts in the majority of patients with a relapsing/remitting
MS (RRMS) course , which after several years of disease
duration converts into a progressive disease. Since anti-
inflammatory therapies and immune modulation exert a
beneficial effect at the relapsing/remitting stage of the
disease, but not in the progressive stage, the question was
raised whether inflammation drives tissue damage in
progressive MS at all. We show here that also in
progressive MS, inflammation is the driving force for brain
injury and that the discrepancy between inflammation-
driven tissue injury and response to immunomodulatory
therapies can be explained by different pathomechanisms
acting in RRMS and progressive MS.
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Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease
of the central nervous system, which is pathologically
defined by the presence of confluent demyelinated plaques
in the white matter [1]. In the majority of patients, it starts
with a relapsing/remitting course, which after several years
of disease duration converts into a progressive disease,

which may or may not be superimposed by relapses. In
about 15% to 20% of patients, a primary progressive course
is seen, which manifests itself as a slowly progressive
disease from the onset [2]. Relapsing/remitting multiple
sclerosis (RRMS) appears to be largely driven by the
inflammatory process. Newly formed lesions within the
central nervous system (CNS) are associated with contrast
enhancement in magnetic resonance imaging (MRI) scans,
and this is reflected by profound inflammation within the
lesions [3, 4]. Furthermore, anti-inflammatory therapies and
immune modulation exert a beneficial effect at this stage of
the disease [5]. In contrast, new and gadolinium (Gd)-
enhancing lesions are rare or absent in patients with
progressive disease (primary progressive multiple sclerosis,
PPMS and secondary progressive multiple sclerosis, SPMS)
and ongoing neurodegeneration, for instance, visualized by
progressive loss of brain volume is not correlated with
number and appearance of new focal white matter lesions [6–
8]. Most importantly, current immunomodulatory or anti-
inflammatory treatments have little or no beneficial effect in
the progressive stage of the disease [5]. It has, thus, been
suggested that neurodegeneration, which at least in part
develops independent from inflammation drives chronic
brain injury in patients with SPMS and PPMS [9].

In pathology, focal inflammatory demyelinating lesions
with variable axonal destruction are the hallmark in the
relapsing stage of the disease. Such lesions are also present
in patients with SPMS and PPMS, and some of them may
be very similar to classical active lesions seen in early MS.
However, the majority of focal white matter lesions in
progressive MS show either slow expansion at the lesion
edges only or are inactive demyelinated plaques [10].
Besides focal white matter lesions, diffuse damage of the
normal-appearing white matter (NAWM) and demyelinat-
ing lesions in the gray matter, in particular, in the cerebral
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and cerebellar cortex, are prominent [11–14] (Table 1).
Since currently we have no therapeutic options for the
progressive stage of the disease, future therapeutic strate-
gies depend upon knowledge of the pathophysiology of
brain and spinal cord damage in these patients. Key
questions are whether inflammation or inflammation inde-
pendent neurodegeneration drives damage in the CNS in
this stage of the disease and what immunological or
neurobiological mechanisms are involved.

Pathological evidence suggests that inflammation drives
brain injury in progressive MS

It has been noted already in early studies of MS pathology
that in the late progressive stage of the disease, pronounced
diffuse brain and spinal cord injury is present, but the
traditional interpretation postulated that this is a secondary
consequence of tissue damage in focal white matter lesions.
The spectrum of diffuse changes has been named “MS-
encephalopathy,” reflecting secondary (Wallerian) fiber
degeneration following axonal transsection within plaques
or neurodegenerative changes due to age or age-related
confounding diseases [15]. However, recent quantitative
studies in spinal cord pathology provided clear evidence
that diffuse white matter changes cannot be solely
explained by neurodegeneration in focal white matter
plaques [16–19]. Similarly, focal lesion load in the brain
only correlated poorly with the extent of diffuse white
matter injury or cortical demyelination [12]. These data
suggest that these three different types of MS pathology, at
least in part, develop independently from each other, but
they do not solve the question whether they are induced by
inflammation or are inflammation independent neurodegen-
erative process.

There is good agreement between different neuropatho-
logical studies that inflammation is present in the CNS of
patients with PPMS and SPMS, however, the extent of
inflammation is highly variable between cases. We, thus,

addressed the question regarding inflammation versus
neurodegeneration in MS brain and lesions in a more
systematic approach [20]. We found a highly significant
correlation between inflammation (T cells, B cells, or
macrophages) and acute axonal injury, determined by
disturbance of fast axonal transport. In particular, patients
with PPMS and SPMS with very rapid disease progression
showed very pronounced inflammation, which was quanti-
tatively similar to that seen in the relapsing stage. Such a
correlation, however, does not prove that inflammation
drives neurodegeneration. From these data, one cannot
exclude that neurodegeneration secondarily provokes an
inflammatory response. To adress this question further, we
specifically selected a cohort of MS patients in whom
inflammation on the level of T cells, B cells, and macro-
phages had declined to levels seen in age-matched controls.
Such a scenario is seen in aged MS patients with very long
disease duration [20]. Analyzing axonal injury in these
patients, we observed that its degree, too, is reduced to
levels as seen in age-matched controls, provided that the
patients did not suffer from MS-unrelated but age-related
confounding pathology, such as Alzheimer’s disease or
vascular lesions. If MS-related neurodegeneration continues
in the absence of inflammation, further neurodegeneration
would have to be seen in such a patient cohort. From these
data, we conclude that neurodegeneration in MS is driven
by inflammation, not only in the relapsing, but also in the
progressive stage.

Inflammation in progressive MS becomes trapped
within the CNS behind a closed (or repaired) blood
brain barrier

There is a major discrepancy between neuropathological
findings and data obtained by magnetic resonance imaging
[21]. While inflammation is prominent in the brain of
patients with progressive MS, contrast enhancement in MRI
scans is rare or absent. Contrast enhancement reflects

Table 1 Differences between relapsing/remitting and progressive multiple sclerosis

Relapsing/remitting multiple
sclerosis

Progressive multiple sclerosis

Contrast enhancing lesions in magnetic resonance imaging +++ (+)/−
Response to anti-inflammatory/immunomodulatory treat-
ment

+++ −

Pathological changes:

Focal inflammatory lesions with variable destruction of
axons

+++ ++(Slow expansion at lesion edge or
inactive)

Diffuse damage of the normal-appearing white matter + +++

Demyelination in gray matter (cerebral and cerebellar
cortex)

+ +++
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disturbance of the blood brain barrier, which in patients
with relapsing MS is apparently induced by waves of
inflammatory cells, entering the CNS from the circulation.
However, sensitivity of Gd-enhancement for the detection
of blood brain barrier disturbance is low and does not
depict the low grade disturbance of blood brain barrier,
which is seen in pathology in all, including inactive MS
lesions [21]. Furthermore, in MS, there is a discrepancy
between inflammation and blood brain barrier damage. A
leaky blood brain barrier is seen in active lesions of acute
and relapsing MS, not only in inflamed vessels, but also in
adjacent vessels without perivascular inflammatory cells.
This may be due to the action of soluble inflammatory
mediators, which by themselves may impair blood brain
barrier permeability. In contrast, in progressive MS, many
blood vessels are seen, which are surrounded by thick
perivascular infiltrates, but do not show leakage of serum
proteins or the expression of markers associated with
increased endothelial permeability [22]. These data suggest
that inflammation in MS may become trapped behind a
closed (or repaired) blood brain barrier (Fig. 1). This view
is further supported by the observation that in progressive
MS lymph follicle-like structures (also known as tertiary
lymphoid organs) are formed within the connective tissue
compartments of the CNS, meninges, and large perivascular
spaces [23, 24].

Lymph follicle-like structures in progressive MS

Organized lymphoid structures that resemble secondary
lymphoid organs in tissues often form, as a result of chronic
inflammatory processes. Their formation is a dynamic
process, which starts with sparse lymphocytic infiltration
and eventually, organizes in secondary B cell follicles with
germinal centers and distinct T cell areas containing
dendritic cells and high endothelial venules [25]. Ectopic
lymph follicles in MS patients share with those observed in
other chronic inflammatory diseases the presence of CD21+
CD35+ follicular dendritic cells, or germinal centers, but
clearly differ from follicles of those other diseases, by the
absence of T cell aggregates with CCL19+ CCL21+ stromal
cells, dendritic cells, and high endothelial venule-like vessels
[25]. It is assumed that the same signaling pathways, which
orchestrate the organogenesis of lymphoid organs like
lymph nodes and spleens are also used for the formation
of ectopic lymph follicles. For example, the development of
secondary lymphoid organs like spleen and lymph nodes
crucially depends on signaling through the lymphotoxin-
beta receptor [26], the accumulation of leukocytes in
nonlymphoid tissues is promoted by the expression of
CCL19 and CXCL12 [27], and the pathways culminating in
segregation of B and T cells at these sites are driven by

CCL21 or CXCL13 [28, 29]. All of these molecules are
also found in chronically inflamed tissues harboring
lymphoid-like structures. Hence, the formation of ectopic
lymph follicles seems to involve a complex interplay of
adhesion molecules, lymphoid chemokines like CCL19,
CCL21, CXCL12, and CXCL13 induced in follicle-
organizing stromal cells in response to lymphotoxin, and a
tissue specific response program controlled by the func-
tional diversity of stromal cells at a given anatomical site
[25]. This tissue specific response program might be
responsible for the formation of ectopic lymph follicles in
the meningeal compartment and not in the CNS paren-
chyma of patients with secondary progressive MS:
Meninges are fibroblast-rich structures, and activated
fibroblasts have the ability to support lymphocyte adhesion
and survival [30, 31]. Moreover, changes of local fibro-

Fig. 1 Inflammation of the central nervous system (CNS) in
progressive multiple sclerosis (MS) differs from inflammation of
relapsing/remitting multiple sclerosis (RRMS). In RRMS at relapse,
the blood brain barrier is open, and large numbers of bloodborne T
cells and monocytes/macrophages enter the CNS parenchyma and
locally release proinflammatory factors. In RRMS during remission,
the blood brain barrier is repaired, and the numbers of intra-
parenchymal T cells is dramatically decreased as is the degree of
microglial cell activation. In progressive MS, inflammation is trapped
behind a closed blood brain barrier, and damage of the CNS
parenchyma is provoked by the action of diffusible factors acting on
microglia cells and a few intraparenchymal T cells
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blasts or the differentiation of fibroblast precursors could
give rise to the population of follicular dendritic cells found
in the ectopic lymph follicles [25, 32]. Germinal centers of
ectopic lymph follicles contain proliferating B cells and the
networks of follicular dendritic cells needed for B cell
proliferation, maturation, and survival. This could be one
contributing factor to the intrathecal antibody production in
MS patients, although, it has to be mentioned in this
context that intrathecal antibodies are a diagnostic hallmark
of MS and are already present at the onset of the disease
while the course is not yet progressive.

The consequences of ectopic lymph follicles
for progressive MS

Ectopic lymph follicles are almost exclusively found
adjacent to large subpial cortical lesions and in the
meninges entering the cerebral sulci with underlaying
inflammation and demyelination [24], and evidently form
in response to chronic inflammatory processes within the
adjacent tissue. However, their presence is associated with
large and actively demyelinating subpial cortical lesions
[24], and they may, thus, contribute to and possibly, even
massively amplify inflammation in the underlaying tissue.
This assumption is based on some structural peculiarities of
ectopic lymph follicles in progressive MS, which sets them
apart from other secondary or tertiary lymphoid organs.

In secondary lymphoid organs like lymph nodes,
fibroblast reticular cells form the conduit system, which is
an interconnected network of collagen fibres that are
wrapped by extracellular matrix sheaths and are completely
surrounded and enfolded by podoplanin-expressing fibro-
blastic reticular cells [33–35]. The diameter of these
conduits is too small to transport cells, but allows the
coordinated and directed transport of signal molecules like
chemokines, cytokines, and antigen. This is especially
important for the chemokines CCL19 and CCL21, which
are produced by fibroblastic reticular cells and associate
with the basement membrane (and hence, the inside) of the
conduit. In the absence of conduits, as seen in the ectopic
lymph follicles of secondary progressive MS (Lassmann
and Kerjaschki, unpublished observation), these chemo-
kines are not locally confined. Instead, they could easily
diffuse, become available to macrophages and microglia
cells in the subpial cortex, and possibly modify the function
and behavior of these cells in the course of inflammatory
processes. Such a scenario has recently been described for
human monocytes [36]: CCL19 and CCL21 per se do not
act on monocytes and do not compete with other chemo-
kines for binding to the chemokine receptor CCR2 on
monocytes. And yet, in the presence of CCL19 and CCL21,
monocytes need much lower concentrations of the CCR2

agonists CCL2 and CCL7 to initiate cell and migration
responses (in the case of CCL7, ~100 times lower
concentrations!) than in their absence because CCL19 and
CCL21 prevent the degradation of chemokines by the
decoy receptor D6 and thus, modify one important control
mechanism to dampen inflammatory responses [36].

Not only chemokines like CCL19 or CCL21 could
become available to the cerebrospinal fluid and the subpial
cortex, but also the follicular dendritic cell-derived cyto-
kines, IL-15 and IL-6. The availability of IL-15 would have
different effects on memory and effector CD8+ T cells. The
Il-15 induces the antigen-independent proliferation and
enhances the antigen-specific stimulation of CCR7+ central
memory CD8+ T cells [37] which dominate in the
cerebrospinal fluid of MS patients [17], but has only
marginal effects on CCR7− effector memory CD8+ T
cells, which represent the major cell type of T cell
infiltrates in the CNS parenchyma of MS patients [37,
38]. Increased concentrations of IL-6 in the subpial cortex,
however, could induce the synthesis of the proinflamma-
tory prostaglandin E(2) in astrocytes [39] and hence,
exacerbate neuroinflammation.

Taken together: The chronically inflamed brain may
create a local environment that favors the retention of
inflammatory cells within this compartment and the
aberrant formation of lymphatic structures. The failure of
current immunosuppressive or immunomodulatory treat-
ments in patients with SPMS and PPMS may, thus, be more
related to their inability to pass the blood brain barrier and
to reach therapeutically relevant concentrations within the
CNS compartment.

Cortical lesions: a tool to study the pathophysiology
of tissue injury in progressive MS

While both perivascular and parenchymal infiltration of T
cells is a characteristic feature of active lesions in acute and
relapsing MS, the pattern of inflammation is different in the
progressive stage. In lesions and NAWM of patients with
progressive MS inflammatory cells are dominantly seen in
perivascular cuffs, while their dispersion into the parenchy-
ma is sparse. Thus, there is a topographical mismatch
between lymphocyte infiltration and tissue injury. This is
even more pronounced in active lesions in the cerebral or
cerebellar cortex [40]. There, T cells, B cells, and plasma
cells are nearly exclusively located in the meninges [20],
and the severity of meningeal inflammation or lymph
follicle formation correlates with the activity of the cortical
lesions [24]. Active tissue injury and demyelination in the
cortex is associated with profound microglia activation
[11]. However, shape and topographical orientation of
cortical lesions are closely related to meningeal inflamma-
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tory infiltrates, and areas with low circulation of the
cerebrospinal fluid, such as cortical sulci and deep
invaginations of the brain surface (such as the insular
cortex), are predilection sites for cortical lesions [12]. These
data suggest that soluble factors produced by meningeal
inflammatory cells diffuse into the cortical tissue and
induce demyelination and tissue injury either directly or
indirectly through microglia activation. Studies in experi-
mental autoimmune encephalomyelitis, a model which can
give rise to very similar cortical lesions [41, 42], suggest
that specific demyelinating (anti-myelin oligodendrocyte
glycoprotein) antibodies are one candidate for such a
soluble factor. However, immunoglobulin and complement
deposition on cortical myelin at sites of demyelination in
MS are generally not seen [43]. Thus, the nature of the
putative soluble factor, which drives tissue injury in cortical
lesions is so far unidentified.

Mitochondrial injury is a major factor of driving
demyelination and neurodegeneration in progressive
MS

Primary demyelination with destruction of mature oligo-
dendrocytes together with variable axonal injury is defined
as the hallmark for multiple sclerosis lesions. Axonal injury,
preferentially, involves small caliber axons [44]. Thus, in
chronic MS lesions the quantitative profile of axonal
diameter is shifted towards thick axons, and the preserva-
tion of unusually thick axons with high reactivity for
phosphorylated neurofilament is frequently seen. Thus,
considerations on the mechanisms of tissue injury in MS
lesions have to take into account the differential vulnera-
bility of oligodendrocytes and thin axons in relation to
other cellular components of the lesions.

Interestingly, a similar preferential affection of oligoden-
drocytes and thin axons is also seen in hypoxic lesions of
the white matter, and a pattern of tissue injury closely
similar to that in white matter stroke has been observed in a
setting of fulminate active MS lesions. In such lesions,
profound mitochondrial alterations consisting of a predom-
inant loss of COX1, the heme-containing protein of
Complex IV of the respiratory chain, suggest that
hypoxia-like tissue injury is driven by mitochondrial injury
[45, 46]. Similar changes in mitochondrial proteins [47] and
their messenger RNAs [48] have also been observed in
chronic MS associated with active lesions [47]. Further-
more, in inactive lesions, an increase of mitochondrial mass,
as well as of respiratory chain activity is seen, apparently
reflecting an attempt to compensate the defect when
inflammation has declined [46] (Fig. 2). In contrast to the
situation for oligodendrocytes, the consequences of mito-
chondrial dysfunction in axons is well understood [48, 49].

Energy failure impairs the clearance of sodium ions from the
axoplasm of spiking axons. Accumulated Na+ in the
axoplasm is replaced by Ca++ ions through reverse operation
of the sodium/calcium exchanger. This, together with
activation of Ca++ channels, leads to Ca++ overload of the
axons and axonal degeneration. Small caliber axons are
much more vulnerable for energy deficiency due to their
high energy demand and low numbers of mitochondria.
Whether similar mechanisms are involved in oligodendro-
cyte destruction remains to be resolved.

A major question, which is largely unresolved today, is
what induces mitochondrial dysfunction in MS lesions.
Possible candidates are reactive nitric oxide intermediates
[50]. Inducible nitric oxide synthase, the enzyme responsi-
ble for the formation of nitric oxide (NO) radicals, is
expressed in MS lesions. The NO radicals can directly bind
to and inactivate the heme-containing COX 1 of the
mitochondrial respiratory chain. Reactive oxygen species,
too, can induce mitochondrial dysfunction, although, less
selectively than nitric oxide [45, 51]. Whether radicals are
the only mediators involved in mitochondrial injury is
currently not known.

Profound microglia activation at the sites of injury in the
MS brain and the close association of these cells with
degenerating oligodendrocytes and axons suggest that they
play a key role in mediating demyelination and neuro-
degeneration [52–54]. In addition, the highly significant
correlation between T cell infiltration in the brain and

Fig. 2 Axons found in active lesions of chronic multiple sclerosis
contain functionally disturbed mitochondria. Once inflammation has
declined, an increase of mitochondrial mass, as well as of respiratory
chain activity is seen in axons found in inactive lesions. This may
reflect attempts to compensate inflammation-induced mitochondrial
dysfunction
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meninges with neurodegeneration in progressive MS [20]
suggests that microglia activation is driven by products
from activated T cells (and possibly, B cells). Interestingly,
mitochondrial injury is induced in mixed glial cultures
when exposed to a mixture of proinflammatory cytokines
[55] further supporting the view that tissue damage in MS
is indeed driven by the inflammatory process. However, as
will be discussed below, microglia activation is a complex
process, which may result in both protective and cytotoxic
functions.

The microglial response to degeneration and apoptosis

Degenerated myelin, degenerating neurons, and oligoden-
drocytes, as well as apoptotic infiltrate cells must be
engulfed and removed by microglia cells and activated
macrophages to prevent further damage. For example, if
myelin debris is not cleared off, it could inhibit the
remyelination by oligodendrocytes [56] and could further
activate the complement system to form membrane attack
complexes, which would add to the destruction of myelin
sheaths and axons [57–59]. Microglia cells can efficiently
remove such debris, and they are uniquely equipped with a
battery of receptors to perform this function: For example,
with receptors recognizing the constant portion of immu-
noglobulins (FcγR), which require the prior opsonization of
myelin by antimyelin antibodies [60]; with the complement
receptor-3 (CR3/MAC-1) and the scavenger receptor-AI/II
(SRAI/II), which do not have this requirement, but crucially
rely on the presence of the β galactoside binding lectin
galectin-3/MAC-2 [57]; with the triggering receptor
expressed on myeloid cells-2 (TREM2) needed to clear
apoptotic neurons [61] and cellular debris resulting from
inflammatory processes in active demyelinating lesions
from MS patients [62] and corresponding animal models
[61]; and finally, with phosphatidylserine receptors and
receptors of the Tyro3/Axl/Mertk receptor tyrosine kinase
family [63], which aid in the recognition of apoptotic cells
and membrane vesicles and regulate their phagocytic
elimination. Signaling through these receptors induces an
anti-inflammatory phenotype in microglia cells by inhibit-
ing the production of nitric oxide synthase-2 (NOS2, iNOS)
and by decreasing the transcription of proinflammatory
cytokines [64–66].

Neurotoxic microglia cells may be the end result
of myelin loss and neurodegeneration

Many studies in vitro and in vivo suggest that microglial
neurotoxicity might not only result from the presence of
noxious stimuli, but that it may also be caused by the

absence of key molecules regulating microglial responses.
A very attractive class of molecules involved in this process
are neurotransmitters. Microglia cells carry the appropriate
receptors, for example gamma-aminobutyric acid receptors,
A3 adenosine receptors, cannabinoid receptors, adrenergic
receptors, and dopamine receptors (for review see [67]).
Under pathological conditions, neurotransmitters can be-
come available to microglia cells by ectopic release from
neurons or after synapse stripping [68]. In many, but not all
cases, interactions of such neurotransmitters with their
cognate receptors on microglia cells induce an anti-
inflammatory phenotype in microglia cells by attenuating
the microglial production and release of proinflammatory
cytokines and nitric oxide [67]. For example, under
ischemic conditions, norepinephrine is released in excess
into the extracellular space [69–72]. On one hand, this
molecule is intensely neurotoxic [71, 73] because it
increases the neuronal metabolism and aggravates the
ischemia-associated glutamate excitotoxicity [74, 75], but
on the other hand, it blocks the production of proinflammatory
cytokines from stimulated macrophages and CD8+ T cells
[76, 77], and it favors the production of the anti-
inflammatory cytokine TGF-β [78, 79]. A similar function
is ascribed to acetylcholine, which does not only interact
with conventional acetylcholine receptors on neurons, but
also with the extrasynaptic nicotinic alpha7 acetylcholine
receptor on microglia cells. Again, interaction of acetylcho-
line with its microglial receptor stimulates anti-inflammatory
responses, the so-called cholinergic anti-inflammatory path-
way. It effectively counteracts the excessive production of
proinflammatory cytokines in lipopolysaccharide (LPS)-
activated microglia cells and macrophages in vitro [80–85].
The last example is provided by the recently discovered
neuropeptide urocortin, a member of the corticotropin-
releasing hormone family that localizes to neurons in a
variety of brain regions and has its corresponding receptors
on neurons and microglia cells [86]. Even in ultra low
(femtomolar concentrations), urocortin regulates excessive
inflammatory microglial responses as evidenced by the
inhibition of the production of proinflammatory cytokines
and NO in LPS-stimulated microglia cells in vitro [86].

Another molecule involved in the communication
between microglia cells and neurons is fractalkine
(CX3CL1). This molecule is produced and released by
intact neurons [87, 88], and its interaction with the
fractalkine receptor (CX3CR1) on microglia cells sup-
presses microglial neurotoxicity both in vitro [89] and in
vivo [88].

Finally, electrically active neurons secrete neurotrophins
which efficiently prevent the transformation of microglia
cells to MHC classII+ antigen-presenting cells [90] and
reduce their production of iNOS, NO, and proinflammatory
molecules in response to activation [91].
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From all these different examples listed above one, can
easily deduce that intact neurons produce a large number of
molecules with anti-inflammatory properties that could
maintain microglia cells in a hyporesponsive state and that
the loss of these molecules could remove this braking
system and might permit microglia activation [86]. Placed
in the context of multiple sclerosis, one could speculate that
this source of restraint could be gradually lost in the course
of the disease due to neuronal degeneration. Probably, this
loss is still below a critical threshold in patients with
relapsing/remitting disease and above this threshold when
the disease changes to a secondary progressive course.
Then, even subtle changes in the environment—either
provided by cytokine producing CD8+ T cells in the
parenchyma or by diffusible factors produced in the
meningeal compartment—might be sufficient to lift
the brakes on microglia cell activation (Fig. 3). Under
these conditions, microglia cells would overreact to
stimulation, upregulate the expression of neurotoxic mole-
cules, and eventually, aggravate neuronal loss as long as the
stimulating triggers are present.

What are the triggers for microglia cell activation
in progressive MS?

First of all, these triggers could be provided by inflamma-
tory responses in the CNS parenchyma of patients with
PPMS and SPMS. Inflammation is associated with the
production and release of TNF-α and interferon-γ by
inflammatory TH1 cells and of interleukin-17 by TH17
cells. All these molecules induce the production of
proinflammatory cytokines, the expression of iNOS, and
the release of NO by microglia cells [92, 93].

The CNS of patients with progressive MS is not only
characterized by inflammation, but also by damage to
myelin sheaths. Disrupted myelin could abnormally release
sulfatide (sulfated galactocerebroside), which causes a
dose-dependent increase of iNOS expression and NO
release by microglia cells and stimulates their production
of inflammatory cytokines and chemokines [94].

Then, increasing evidence suggests that strong/chronic
inflammation could trigger the expression of components of
the W family of human endogenous retroviruses in MS
patients [95, 96]. One of these components, the glycopro-
tein syncytin, not only causes toxicity to oligodendrocytes
by inducing the production and secretion of nitric oxide by
astrocytes [97], but is also recognized by myeloid cells like
monocytes, macrophages, dendritic cells, and microglia
cells expressing the appropriate pattern recognition receptor
TLR4/CD14 [98]. Upon interaction with this receptor,
microglia cells and macrophages become activated and
produce proinflammatory cytokines. And last, microglia
cell activation in patients with progressive MS might also
be the result of ageing.

Age, a contributing factor to lesion development
in progressive MS

As described above, MS starts in the majority of patients
with a relapsing/remitting course (RRMS), which after
several years of disease duration converts into a progressive
disease (SPMS). In about 15% to 20% of patients, typically
presenting with first symptoms of MS in a higher age, a
primary progressive course is seen (PPMS), which mani-
fests itself as a slowly progressive disease from the onset
[2]. These observations suggest that the aging brain plays
an important role in the course of progressive MS.

Recent publications indicate that this may indeed be the
case: The aging brain is not only characterized by an
increase in oxidative stress and a decline in neurotransmis-
sion [99–101], but also by the activation of microglia cells
and astrocytes [102–105]. In general, microglia cells of the
aged brain have some morphological features of activation
in that they have shorter cellular processes and larger gaps

Fig. 3 Neurodegeneration lifts the brakes of microglia cells and
renders them more susceptible to inflammation. Then, fewer numbers
of activated T cells seem to be required in both secondary and primary
progressive multiple sclerosis patients to trigger a similar production
of neurotoxic factors by microglia cells than needed earlier in patients
with relapsing/remitting multiple sclerosis at relapse
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between adjacent cells [106]. In addition, they express more
antigen-presenting molecules, primarily in the CNS white
matter [102–105]. Interestingly, in the aged brain, not only
microglia cells are activated. Also astrocytes become
hypertroph, increase the expression of glial fibrillary acidic
protein, and assume an activated phenotype [102–105]. The
activated phenotypes of both types of cells are accompanied
with quite dramatic changes in the expression of inflam-
matory genes in different brain regions, leading to increased
levels of TNF-α and IL-6 in the aged cortex and of IL-1β
and IL-6 in the aged striatum [107]. Such differences
between the adult and the aged CNS could influence
responses of the aged brain to pathological stimuli [106–
109] and could significantly contribute to the progressive
phase of MS.

Concluding remarks

There is no doubt that the driving force for brain injury
in MS patients is inflammation, independent of whether
the patients experience a relapsing/remitting or progres-
sive course of their disease. Nevertheless, the response to
anti-inflammatory treatments is radically different in both
groups of MS patients. This discrepancy between
inflammation-driven tissue injury and response to immu-
nomodulatory therapies can be explained by different
pathomechanisms acting in RRMS and progressive MS.
In RRMS, inflammatory lesions are characterized by an
open blood brain barrier, and new lesions flare up as a
result of distinct waves of brain infiltrating inflammatory
cells entering the CNS parenchyma from the blood
stream. As a result of inflammatory activity, besides
other mechanisms of tissue damage, mitochondrial dys-
function develops, which drives the loss of myelin and
neurons. As long as sufficient numbers of intact neurons
remain, the activation of microglia cells remains control-
lable. Once the number of intact neurons falls below a
critical threshold, the brakes on microglia cell activation
may be lifted. Then, these cells may become hyperreac-
tive in response to stimulation. On top of this process,
age-related changes in microglia cells and astrocytes
could create a proinflammatory environment. This is
possibly the time–point when RRMS turns into a
progressive disease course. In progressive MS, inflam-
mation is trapped behind a closed (or repaired) blood
brain barrier, and most inflammatory activity is found in
the meningeal compartment, occasionally, even associated
with ectopic lymph follicle-like structures. Diffusible
factors released from this compartment become available
to intraparenchymal hyperreactive microglia cells, the
CNS parenchyma, which produce excess amounts of
neurotoxic factors.

Hence, the distinct pathomechanisms acting in progres-
sive MS explain the failure of immunomodulatory treat-
ments and reveal additional targets for the design of novel
therapies.
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