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Abstract

Activation of spinal group I metabotropic glutamate receptors (mGluRs) may have antinociceptive or pro-nociceptive effects in different

pain models. Pharmacological activation of group I mGluRs leads to long-term depression (LTD) of synaptic strength between Ad-fibers and

neurons in lamina II of spinal dorsal horn of the rat. Here, we studied the signal transduction pathways involved. Synaptic strength between

Ad-fibers and lamina II neurons was assessed by perforated whole-cell patch-clamp recordings in a spinal cord-dorsal root slice preparation

of young rats. Bath application of the specific group I mGluR agonist (S)-3,5-dihydroxyphenylglycine [(S)-3,5-DHPG] produced an LTD of

Ad-fiber-evoked responses. LTD induction by (S)-3,5-DHPG was prevented, when intracellular Ca2C stores were depleted by thapsigargin or

cyclopiazonic acid (CPA). Preincubation with ryanodine to inhibit Ca2C-induced Ca2C release had no effect on LTD-induction by (S)-3,5-

DHPG. In contrast, pretreatment with 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of inositol-1,4,5-trisphosphate (IP3)-sensitive

Ca2C stores prevented LTD induction. Preincubation with the specific protein kinase C (PKC) inhibitors bisindolylmaleimide I (BIM) or

chelerythrine, respectively, had no effect. Inhibition of L-type VDCCs by verapamil or nifedipine prevented LTD-induction by (S)-3,5-

DHPG. The presently identified signal transduction cascade may be relevant to the long-term depression of sensory information in the spinal

cord, including nociception.

q 2005 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Strength of nociceptive synapses between primary

afferent Ad- or C-fibers and second order neurons in

superficial laminae of spinal dorsal horn can be modulated

in an activity-dependent manner. Both, use-dependent

synaptic long-term potentiation (LTP) (Azkue et al., 2003;

Ikeda et al., 2003; Randic et al., 1993; Sandkühler and Liu,

1998) as well as long-term depression (LTD) (Chen and

Sandkühler, 2000; Randic et al., 1993; Sandkühler et al.,

1997) have been shown in vivo and in vitro. Plasticity at

these synapses may account for afferent-induced hyper-

algesia, allodynia (Moore et al., 2000; Sandkühler, 2000a;
0304-3959/$20.00 q 2005 International Association for the Study of Pain. Publi

doi:10.1016/j.pain.2005.08.004

* Corresponding author. Tel.: C43 1 4277 62834; fax: C43 1 4277

62865.

E-mail address: juergen.sandkuehler@meduniwien.ac.at

(J. Sandkühler).
Willis, 2002) and analgesia (Sandkühler, 2000b). Some

forms of spinal LTP and LTD depend on activation of group

I metabotropic glutamate receptors (mGluRs) (Azkue et al.,

2003; Chen and Sandkühler, 2000; Gerber et al., 2000). For

the induction of LTD, activation of group I mGluRs is not

only required, but also sufficient, since application of

selective group I mGluR agonist DHPG induces LTD (so-

called DHPG-LTD) between primary afferent Ad-fibers and

second order neurons in laminae I and II in vitro (Chen et

al., 2000; Zhong et al., 2000). Behavioral studies also

attribute group I mGluRs an important role in acute and

persistent nociception at the spinal cord level (for review

see: Fundytus, 2001; Neugebauer, 2002).

Group I mGluRs consist of mGluR1 and mGluR5

subtypes, which are both expressed in lamina II neurons

(Alvarez et al., 2000; Jia et al., 1999; Vidnyanszky et al.,

1994). Group I mGluRs are G-protein-coupled to phospho-

lipase C (PLC) with two different downstream pathways,
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leading to activation of PKC or IP3 (Conn and Pin, 1997;

Hermans and Challiss, 2001). DHPG-dependent LTD in

superficial spinal dorsal horn is mediated by PLC activation

(Chen et al., 2000). PKC, but not the IP3 pathway, may be

involved in pro-nociceptive effects of spinally applied

DHPG in behaving animals (Fisher and Coderre, 1998;

Fundytus et al., 2001), since thermal hyperalgesia in

inflammatory and neuropathic pain models depends on

activation of spinal PKC (Igwe and Chronwall, 2001;

Malmberg et al., 1997; Yashpal et al., 2001). In contrast, the

IP3 pathway seems not to be required for hyperalgesia, as

inhibition of intracellular Ca2C release by intrathecal

thapsigargin had neither an effect in the formalin test

(Álvarez-Vega et al., 2001) nor on hyperalgesia in diabetic

mice (Ohsawa and Kamei, 1999). At present it is not clear, if

the IP3 pathway plays any role in spinal nociception and

which signal transduction pathway(s) mediate(s) mGluR-

induced antinociception. Therefore, we tested, which

pathway(s) downstream to, or independent of the PLC

cascade leads to the induction of DHPG-dependent LTD at a

well-defined site of nociceptive processing at or near the

first central synapse in superficial spinal dorsal horn.
2. Experimental procedures
2.1. Preparation of animals and spinal cord slices

Transverse slices were obtained from young Sprague

Dawley rats of both sexes (18- to 24-d-old). Under deep

ether anesthesia, lumbar spinal cord was exposed by

laminectomy. The segments of the lumbosacral spinal

cord (L4-S1) were excised. Transverse slices with one

long (8–15 mm) dorsal root attached were cut at 400–

600 mm thickness using a vibrating microslicer (DTK-1000,

Dosaka EM, Kyoto, Japan) and incubated at 33 8C for at

least half an hour. The incubating solution was gassed with

carbogen (5% CO2 in 95% O2) and consisted of (in mM):

NaCl, 95; KCl, 1.8; KH2PO4, 1.2; CaCl2, 0.5; MgSO4, 7;

NaHCO3, 26; glucose, 15; sucrose, 50; pH was 7.4,

osmolarity 310–320 mosmol/kg. A single slice was then

transferred to a recording chamber (volume 1.0 ml),

continuously perfused at a rate of 3–4 ml/min with a

recording solution (gassed with carbogen), which was

similar to the incubation solution except for (in mM):

NaCl, 127; CaCl2, 2.4; MgSO4, 1.3; sucrose 0. Picrotoxin

(100 mM) and strychnine (4 mM) were always included in

the bathing solution.

Recordings were made from one neuron per slice at room

temperature.

Experiments were in accordance with European Com-

munities Council directives (86/609/EEC) and were

approved by the Austrian Federal Ministry for Education,

Science and Culture.
2.2. Recording techniques and data acquisition

Perforated whole-cell patch-clamp recording technique

was used to record excitatory postsynaptic currents (EPSCs)

in neurons of lamina II, which was identifiable as a

translucent band across the superficial spinal dorsal horn.

Patch pipettes were pulled from borosilicate glass capil-

laries (Hilgenberg, Malsfeld, Germany) on a horizontal

puller (P-87, Sutter Instruments, Novato, CA, USA) and had

resistances of 3–6 MU. For perforated patch recordings, the

antibiotic gramicidin at a concentration of 50 mg/ml was

used in a solution containing (in mM): potassium gluconate,

120; KCl, 20; MgCl2, 2; HEPES, 20; pH 7.28 adjusted with

KOH; osmolarity 300–310 mosmol/kg. Pipettes were first

front-filled with gramicidin-free solution and thereafter

backfilled with the same solution plus the ionophore. To

detect occasional spontaneous breakthrough of the seal, we

added either the fluorescent dye lucifer yellow (1 mg/ml;

Sigma, Deisenhofen, Germany) or the potassium channel

blocker tetraethylammonium chloride (TEA; 10 mM;

Sigma) to the pipette solution. Cells were rejected, if they

showed intracellular fluorescence during epifluorescence

illumination or a distinct broadening of their action potential

duration, respectively. Usually, series resistance started to

decrease 10–20 min after sealing. After reaching stable

resistances of 25–50 MU, cell capacitance and series

resistance were compensated, and recordings were started.

Mean input resistance of the recorded cells was 649G
69 MU (nZ65).

Neurons were visualized with Dodt-infrared optics using

a !40, 0.80 water-immersion objective on an Olympus

BX50WI upright microscope (Olympus, Japan) equipped

with a video camera system (PCO, Kelheim, Germany) and

an epifluorescence facility. Recordings were made with an

Axopatch 200B patch-clamp amplifier (Molecular Devices,

Union City, CA, USA) at a sampling rate of 10 kHz using a

low-pass bessel filter of 2 kHz. The software package

pCLAMP 8 (Molecular Devices) was used for data

acquisition and subsequent off-line analysis.

Dorsal root was stimulated through a suction electrode

with an isolated current stimulator (A320, World Precision

Instruments, Sarasota, FL, USA). After the threshold for

eliciting an EPSC was determined, test pulses of 0.1 ms

were given at 15 s intervals. Stimulation intensity was

adjusted to supramaximal values. EPSC amplitudes ranged

from 20 to 350 pA. Only the EPSCs that were produced by

excitation of Ad-fibers (calculated conduction velocity

ranged between 2.5 and 15 m/s) were investigated further.

A 10 Hz train of stimulation of 10 pulses was applied to the

dorsal roots to test for mono- or polysynaptic input.

Monosynaptic input was identified by the absence of

failures of the first EPSC component in response to

the stimuli and a constant latency with nearly no jitter

(!0.5 ms) in responses. Six consecutive responses were

averaged and synaptic strength was quantified by measuring

the amplitude of the first peak of averaged responses.
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The mean amplitude of six averaged test responses recorded

prior to the agonist application served as controls.

Significant changes from controls were assessed by

measuring the amplitudes of six consecutive responses at

the end of the agonist application and at 20–30 min after

washout of the agonist.

2.3. Application of drugs

All drugs were dissolved in recording solution, gassed

with carbogen, at known concentrations. Drugs and their

sources were as follows: (S)-3,5-dihydroxyphenylglycine

((S)-3,5-DHPG; 100 mM; Tocris, Köln, Germany), picro-

toxin (100 mM; Tocris), strychnine (4 mM; Sigma), grami-

cidin D (Sigma), thapsigargin (1 mM; Alexis, Grünstadt,

Germany), cyclopiazonic acid (CPA; 30 mM; Calbiochem,

Bad Soden, Germany), 2-aminoethoxydiphenyl borate

(2-APB; 100 mM; Calbiochem), ryanodine (20 mM;

Sigma), dantrolene (25 mM; Sigma), nifedipine (50 mM;

Sigma), verapamil (50 mM; Sigma), bisindolylmaleimide I

(BIM; GF109203X; 5 mM; Tocris) and chelerythrine

chloride (5 mM; Calbiochem). (S)-3,5-DHPG was dissolved

in an aqueous stock solution diluted in perfusing salt buffer

just before use. The solvent for picrotoxin was ethanol (final

maximal concentration 0.25%, v/v). All other drugs were

dissolved in dimethylsulphoxide (DMSO; Sigma; maximal

final concentration 0.25%, v/v). In control experiments, this

DMSO concentration did no significantly affect membrane

potential, membrane resistance or strength of synaptic

transmission in superficial spinal dorsal horn neurons. The

mean amplitude of Ad-fiber-evoked EPSCs changed to 98G
5% of baseline (nZ6, data not shown) following DMSO

application.

2.4. Data analysis

Analysis of the data was performed using SigmaStat 2.03

(Systat Software GmbH, Erkrath, Germany). Values are

given as meansGone standard error of the mean (SEM). If

not stated otherwise, data were tested for normality

(Kolmogorov–Smirnov test), and than a one way repeated

measures analysis of variance (ANOVA) was performed for

statistical comparison followed by an appropriate post-hoc

test (P!0.05 was considered to be statistically significant).
3. Results

Stable recordings of up to 2 h were made from a total of

65 neurons in lamina II of the spinal dorsal horn. In all of

the neurons included in this study, electrical stimulation of

Ad-fibers in the attached dorsal root evoked fast EPSCs at a

holding potential of K70 mV. The majority of the Ad-fiber-

evoked EPSCs recorded was monosynaptic in nature (66%).

In all figures, only results from monosynaptically evoked

EPSCs are summarized. Statistical analysis was applied to
the effect of (S)-3,5-DHPG on mono- and polysynaptically

evoked EPSCs, respectively, wherever applicable, and

additionally to the pooled data (summarized in Table 1).

All of the neurons included in this study had membrane

potentials more negative than K50 mV and the mean

resting membrane potential of these cells was K59G1 mV.

In pilot studies, using the conventional whole-cell patch-

clamp technique, pharmacological activation of group I

mGluRs failed to affect synaptic transmission in lamina II

(nZ4, data not shown), probably because an essential

diffusible compound was lost. This was prevented in all

subsequent experiments by using the perforated patch-

clamp recording technique to measure postsynaptic

currents. Under these conditions, application of the specific

agonist of group I mGluRs (S)-3,5-DHPG (Ito et al., 1992)

in the superfusing solution (100 mM for 20 min) reduced the

mean amplitude of monosynaptically evoked EPSCs to

65G6% of control (P!0.001; Table 1, Fig. 1). EPSC

amplitudes were still depressed to 58G7% of control after

washing for 20 min (long-term depression, LTD; nZ5, P!
0.001 vs. control). The (S)-3,5-DHPG-induced LTD

persisted throughout the recording periods of up to 75 min

after commencing washout, confirming previous results

(Chen et al., 2000; Zhong et al., 2000). The mean negative

holding current necessary to voltage clamp neurons

at K70 mV was transiently increased 2 min after (S)-3,5-

DHPG application from K18G4 pA to K28G4 pA (nZ9,

P!0.01, paired t-test) and the mean membrane resistance

decreased from 731G99 MU to 651G89 MU (nZ9, P!
0.05, paired t-test).

The group I mGluR-mediated LTD is expressed via a

PLC-initiated signaling cascade (Chen et al., 2000). Here,

we examined the effects of reagents that target specific steps

in this pathway. Ca2C is a second messenger that is released

from IP3-sensitive intracellular stores upon group I mGluR

activation. The sarco/endoplasmic reticulum Ca2C/ATPase

(SERCA) pump inhibitor thapsigargin depletes intracellular

stores of Ca2C by blocking Ca2C re-uptake into the stores

(Bian et al., 1991). To examine the role of Ca2C release

from intracellular stores by (S)-3,5-DHPG, thapsigargin

(1 mM) was applied to slices 20 min prior to and during

group I mGluR activation. Superfusion with thapsigargin

had no significant effect on EPSC amplitude, but abolished

the LTD-induction by (S)-3,5-DHPG (Table 1, Fig. 2A).

Similar results were obtained with cyclopiazonic acid (CPA,

30 mM), another SERCA pump inhibitor. CPA alone did not

change EPSC amplitude, but effectively prevented (S)-3,5-

DHPG-mediated LTD-induction (Table 1, Fig. 2B).

Ca2C-release from internal stores may be mediated by

the activation of IP3 receptors or ryanodine receptors. Since,

both receptors have been demonstrated immunohistochemi-

cally and/or functionally in rat spinal dorsal horn neurons

(Rodrigo et al., 1993; Sharp et al., 1993; Voitenko et al.,

1999), we used specific receptor blockers to discriminate

between the involvement of IP3- and/or ryanodine-sensitive

intracellular stores. Since we performed perforated patch-
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Table 1

Effect of pretreatment of spinal cord slices with different inhibitors of Ca2C si epression in lamina II of the dorsal horn

EPSCs DHPG effect No pre-treat-

ment

Thapsigargin CPA edipine BIM Chelerythrine

mean EPSC amplitudes (GSEM) in % of control (before DHPG application)

Monosynaptic Direct 65G6 (5)*** 103G5 (3) n.s. 100G 3 (6) n.s. 66G9 (6)** 61G1 (2) n.t.

Long-term 58G7 (5)*** n.m. n.m. 4 (4) n.s. 67G10 (6)** 56G9 (2) n.t.

Polysynaptic Direct 63G10 (4)** 98G8 (4) n.s. 95 (1 (1) n.t. n.m. 46G3 (4)***

Long-term 58G7 (4)** n.m. n.m. (1) n.t. n.m. 35G5 (4)***

Pooled Direct 64G5 (9)*** 100G5 (7) n.s.

###

99G

###

3 (7) n.s. 66G9 (6)**

no

51G4 (6)***

no

Long-term 58G6 (9)*** n.m. n.m. G6 (5) n.s. 67G10 (6)**

no

42G6 (6)***

no

Mean EPSC amplitudesGSEM in % of control. Statistical significance of direct ) of (S)-3,5-DHPG application (100 mM) on synaptic

strength between Ad-fibers and spinal lamina II neurons was assessed by one-w .05, ** P!0.01, *** P!0.001 in the post-hoc test;

n.s., not significant; n.m., not measured; n.t., not tested; number of tested slices ctivation with thapsigargin (1 mM) or cyclopiazonic

acid (CPA, 30 mM) to deplete intracellular Ca2C stores, with the IP3 receptor blo s, with verapamil (50 mM) or nicardipine (50 mM) to

block L-type Ca2C channels, or with the specific PKC inhibitors bisindolylmale was also used to analyze differences in the strength

of inhibition between treatments: # P!0.05, ## P!0.01, ### P!0.001 in the asting) without pretreatment; no, not significant. In

addition to the pooled data, statistics were applied to mono- and polysynaptica
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of this pathway, we pretreated the slices with either

chelerythrine (Herbert et al., 1990) or bisindolylmaleimide

I (BIM; Toullec et al., 1991), respectively, both inhibiting

PKC by specific interacting with the catalytic domain of this

kinase. Bath application of BIM (5 mM for 20 min) had no

significant effect on normal synaptic transmission, nor did it

prevent the induction of DHPG-LTD (Table 1, Fig. 4A).

Using chelerythrine (5 mM) as the specific PKC inhibitor

gave similar results. Preincubation for 20 min had no effect

on EPSC amplitudes. Subsequent administration of (S)-3,5-

DHPG reduced the mean amplitude of Ad-fiber evoked

EPSCs significantly and synaptic transmission remained

depressed for at least further 20 min after starting wash out

of (S)-3,5-DHPG (Table 1, Fig. 4B). Thus, LTD-induction

of synaptic strength between primary afferent Ad-fibers and

neurons in superficial spinal dorsal horn by group I mGluRs

does not require activation of PKC.

Several forms of LTD have been found to depend on

Ca2C influx through L-type VDCCs (Christie and Abraham,

1994; Normann et al., 2000; Wu et al., 2001). Agonists

acting on group I mGluRs may facilitate L-type Ca2C

channels in different cell types (Chavis et al., 1996; Svirskis
and Hounsgaard, 1998). DHPG may induce Ca2C influx

through L-type Ca2C channels in striatal neurons (Mao and

Wang, 2003). Here, pretreatment with the L-type Ca2C

channel blocker verapamil (50 mM for 20 min) did not

change normal synaptic transmission. Verapamil did,

however, attenuate the reduction of the mean EPSC

amplitudes during (S)-3,5-DHPG application (for 20 min)

significantly (Table 1, Fig. 5A). Washout of (S)-3,5-DHPG

led to a complete recovery of EPSC amplitudes to baseline

within 8 min (Table1, Fig. 5A). Bath application of another

inhibitor of L-type Ca2C channels, the dihydropyridine

nifedipine (50 mM for 20 min), also suppressed induction of

DHPG-LTD, but did not prevent transient reduction of

EPSC amplitudes during superfusion with (S)-3,5-DHPG

(for 20 min; Table 1, Fig. 5B). Thus, the inhibition of Ca2C

influx through L-type VDCCs prevented long-term, but not

direct depression of synaptic strength in spinal lamina II.

To test if there were acute and/or long-term effects of the

various inhibitors to the DHPG-LTD, we performed

statistical analysis (one way ANOVA) to elucidate potential
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effects of the different treatments on the strength of synaptic

inhibition. No significant difference could be revealed

between DHPG effect without pretreatment and pretreat-

ment with ryanodine, verapamil, BIM or chelerythrine,

respectively (Table 1). Additionally, there was no difference

in the long-term effect (after DHPG washout) between these

groups, except for verapamil (Table 1). In contrast, synaptic

strength during DHPG application was significantly

different after pretreatment with thapsigargin, CPA,

2-APB or nifedipine, respectively, from that without

pretreatment. No difference could be detected between the

pretreatment groups (Table 1).
4. Discussion

We have explored the signal transduction pathways

leading to LTD of synaptic strength between afferent Ad-

fibers and neurons in the spinal lamina II of the rat following

activation of group I mGluRs. We have previously

demonstrated, that the activation of PLC is necessary for
group I mGluR-induced LTD in the spinal dorsal horn

(Chen et al., 2000). Here, we show that, downstream the

G-protein-activated phosphoinositide turnover, it is the IP3

branch of this cascade and not PKC that mediates the LTD

of synaptic strength. In addition, Ca2C influx through

L-type VDCCs is a prerequisite for long-term, but not for

acute depression of synaptic strength.
4.1. Pre- or postsynaptic expression of DHPG-LTD

in spinal lamina II?

The locus of induction and expression of long-term

synaptic plasticity is still controversial. In spinal lamina II

evidence is in favor for a postsynaptic induction mechan-

ism: (1) Dialyzing the postsynaptic neurons by conventional

whole-cell recordings prevented the induction of LTD by

DHPG application in the present study; (2) DHPG

application increased the negative current necessary to

hold the cells at K70 mV indicating a membrane

depolarization in postsynaptic cells; (3) several
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immunohistochemical studies failed to detect mGluR1/5

immunoreactivity in primary afferent sensory terminals and

found only little evidence of immunoreactivity in other

presynaptic axon terminals in spinal lamina II of the rat

(Alvarez et al., 2000; Jia et al., 1999; Tang and Sim, 1999;

Vidnyanszky et al., 1994), pointing to a postsynaptic

expression of these receptors. However, it cannot be

excluded, that the LTD in our preparation was induced

postsynaptically and expressed presynaptically, mediated

by a retrograde signaling mechanism.

4.2. Activation of PKC is not required for group I

mGluR-induced LTD

Chelerythrine and BIM, two of the most potent and

selective PKC inhibitors known (Herbert et al., 1990;

Toullec et al., 1991), failed to block LTD-induction in the

present study. The applied concentration (5 mM) was in the

upper range of concentrations known to be effective

on synaptic responses in spinal cord slice preparations

(Garraway et al., 2003; Kawasaki et al., 2004). Additionally,

application of 1 mm BIM prevented LTP induction in spinal

lamina I neurons by conditioning stimulation of the attached

dorsal root (Sandkühler and Ikeda, 2003), demonstrating the

efficacy of the inhibitor in our preparation. PKC activation is

also not necessary for DHPG-LTD at synapses in other

regions of the central nervous system, for example in the rat

dentate gyrus (Rush et al., 2002) and in the CA1 region of

the hippocampus (Schnabel et al., 1999; Schnabel et al.,

2001). Thus, the depressant effects of group I mGluRs
apparently do not involve the PKC branch of signal

transduction.

In contrast, facilitation of nociceptive processing by

DHPG in some behavioral studies (Adwanikar et al., 2004;

Fisher and Coderre, 1998) may depend on PKC activation.

Activation of spinal PKC is necessary for the induction of

hyperalgesia and allodynia in various inflammatory and

neuropathic pain models (Igwe and Chronwall, 2001;

Malmberg et al., 1997; Yashpal et al., 2001), including

group I mGluR-dependent pain states (Fundytus et al., 2001;

Guo et al., 2004).

Since, PKC activation played no role in DHPG-induced

LTD in spinal lamina II in vitro (present study), dichotomy

of signal transduction pathways downstream to PLC

activation may explain qualitatively different effects of

group I mGluR activation on nociception.

4.3. Ca2C release from intracellular stores is required

for group I mGluR-induced LTD

Our results show, that Ca2C release from IP3-sensitive

stores is required for DHPG-induced LTD in superficial

spinal dorsal horn neurons. LTD-induction, which requires

Ca2C release from internal stores, has also been described in

the hippocampus (O’Mara et al., 1995; Reyes and Stanton,

1996; Wang et al., 1997). Some of these LTD forms

required Ca2C-induced Ca2C release from a ryanodine

receptor-gated Ca2C pool (O’Mara et al., 1995; Reyes and

Stanton, 1996). Our results with inhibition of ryanodine

receptors suggest, however, that Ca2C-induced Ca2C
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release is not necessary to amplify the Ca2C signal initiated

by IP3 to induce DHPG-LTD in spinal lamina II neurons.

Similar to the present findings, DHPG effects mediated by

Ca2C-release from ryanodine-insensitive internal stores, but

not by PKC activation, has also been described in other

systems. For example, DHPG-induced [Ca2C]i oscillations

in lamprey spinal cord neurons were abolished by

thapsigargin, but not by ryanodine or PKC inhibitors

(Kettunen et al., 2002). Inhibitory action of DHPG on

membrane excitability of dentate granule neurons was

blocked by IP3 receptor inhibition, but not by PKC

inhibition (Abdul-Ghani et al., 1996).

In contrast to the PKC branch of PLC signal transduction

pathway, the IP3 pathway seems not to be essential for

induction of hyperalgesia. Inhibition of Ca2C release from

intracellular stores by intrathecal thapsigargin had no effect

in the formalin test (Álvarez-Vega et al., 2001) nor on pain

behavior in diabetic mice (Ohsawa and Kamei, 1999). There

are contradicting results in normal mice, where pro-

nociceptive (Ohsawa and Kamei, 1999) as well as

antinociceptive (Bernstein and Welch, 1995) effects of

intrathecally applied thapsigargin were reported. These data

have to be interpreted with caution, since thapsigargin

not only prevents intracellular Ca2C release by depleting

IP3-sensitive stores, but also increases cytosolic Ca2C

concentration, at least transiently, by inhibiting ATPase-

dependent Ca2C re-uptake into these stores (Bian et al.,

1991). In the present study, we excluded, that the resulting

Ca2C increase mediates the thapsigargin effect on LTD-

induction by DHPG, by preincubating the slices with

ATPase inhibitors for at least 20 min. This treatment had

no impact on synaptic strength.

In conclusion, pharmacological activation of group I

mGluRs in spinal cord may have both, pro-nociceptive

effects mediated by the PKC branch of PLC pathway and

long-lasting antinociceptive effects mediated by synaptic

LTD which involves the IP3 pathway.

4.4. Ca2C influx through L-type VDCCs is required

for group I mGluR-induced LTD

In line with other studies in the hippocampus of the rat

(Christie and Abraham, 1994; Normann et al., 2000; Wu et

al., 2001) we found that Ca2C influx into the postsynaptic cell

through L-type VDCCs is essential for LTD-induction.

Agonists of group I mGluRs facilitate L-type Ca2C channels

in different cell types, for example in neurons of the nucleus

tractus solitarius of rats (Endoh, 2004) and in catfish

horizontal cells (Linn, 2000). In striatal neurons, DHPG

induces Ca2C influx through L-type VDCCs (Mao and

Wang, 2003). Furthermore, DHPG-induced [Ca2C]i oscil-

lations in lamprey spinal cord neurons are dependent on

Ca2C-influx through L-type channels (Kettunen et al., 2002).

Membrane depolarization by DHPG can be strong

enough to open L-type VDCCs (Bianchi et al., 1999; Mao

and Wang, 2003). Since, we performed our recordings under
voltage-clamp conditions (VHoldZK70 mV), the question

arises, how and where a sufficient depolarization may occur

to activate high-threshold L-type VDCCs. The series

resistance, which is achievable by the perforated patch

recording technique, is three to five times higher than in

conventional whole-cell recordings. This inevitably mag-

nifies space-clamp problems especially in neurons with an

extended tree of dendrites, including many neurons in

lamina II of the spinal dorsal horn. Thus, it is well possible,

that under nominal ‘voltage-clamp’ conditions DHPG may

induce substantial depolarization of the cell membrane

(Zhong et al., 2000) at distal dendrites, that reaches the

threshold for opening of facilitated L-type VDCCs.

Additionally, a contribution of these channels to the resting

intracellular Ca2C concentration has been described (Avery

and Johnston, 1996; Magee et al., 1996). This seems to be in

contrast to the voltage dependency of L-type channel

activation. However, cloned L-type channels, composed of

a1D (Cav1.3) subunit, can be activated at membrane

potentials around K60 mV (Koschak et al., 2001; Perrier

et al., 2002). This corresponds to the resting membrane

potential of many spinal lamina II neurons. These class D

L-type channels are expressed in the rat spinal dorsal horn

(Westenbroek et al., 1998).

4.5. Hypothetical postsynaptic mechanisms leading

to DHPG-induced LTD in spinal lamina II

Our results suggest, that Ca2C released from intracellular

stores and Ca2C influx from extracellular space through

voltage-dependent L-type channels is necessary to pass

threshold Ca2C level for induction of LTD in superficial

spinal dorsal horn neurons. Presumably, group I mGluR

stimulation may release Ca2C from reticular Ca2C stores

leading to facilitation of L-type VDCCs (Perrier et al., 2002)

via Ca2C binding to calmodulin (Zühlke et al., 1999).

According to the hypothesis of Lisman (2001), level and/or

kinetic of the resulting precipitous postsynaptic Ca2C rise

by group I mGluR activation is sufficient to initiate a

phosphatase cascade (involving calcineurin and protein

phosphatase-1 (PP1)). This leads to dephosphorylation of its

substrates, which may include the ‘molecular switch’ Ca2C/

calmodulin dependent protein kinase II (CaMKII) and

AMPA receptors, resulting in long-lasting synaptic weak-

ening (Kemp and Bashir, 2001) (Fig. 6).

4.6. Functional consequences of spinal DHPG-LTD

In addition to the present results, other electrophysio-

logical studies also demonstrate a potential antinociceptive

effect of intrathecally applied DHPG on responses of spinal

dorsal horn neurons to noxious stimuli, at least at higher

concentrations (Neugebauer et al., 1999; Stanfa and

Dickenson, 1998), even though the phenotype of the

recorded neurons (excitatory or inhibitory) in these and in

the present study is unclear. Some data indicate a potential



B. Heinke, J. Sandkühler / Pain 118 (2005) 145–154 153
analgesic effect of spinally administered DHPG (Dolan and

Nolan, 2002), but pro-nociceptive effects may predominate.
5. Conclusions

Synaptic LTP and LTD are considered to be fundamental

cellular mechanisms of learning and memory in the

hippocampus (Bliss and Collingridge, 1993; Bortolotto

et al., 1999) and in pain pathways (Sandkühler, 2000a). Our

present study elucidates signal transduction pathways

leading to long-lasting depression of presumably nocicep-

tive synaptic transmission in the rat superficial spinal dorsal

horn, induced by selective activation of group I mGluRs.

This may propel the targeted development of novel drugs,

which may cause analgesia outlasting the period of

application.
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