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Oligodendrocytes have been considered as a functionally homogeneous population
in the central nervous system (CNS). We performed single-cell RNA sequencing on
5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and
adult CNS.Thirteen distinct populations were identified, 12 of which represent a continuum
from Pdgfra+ oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes.
Initial stages of differentiation were similar across the juvenile CNS, whereas subsets
of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly
formed oligodendrocytes were detected in the adult CNS and were responsive to complex
motor learning. A second Pdgfra+ population, distinct from OPCs, was found along vessels.
Our study reveals the dynamics of oligodendrocyte differentiation and maturation,
uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in
the CNS.

O
ligodendrocytes ensheath axons in the
central nervous system (CNS), allowing
rapid saltatory conduction and providing
metabolic support to neurons. Although
a largely homogeneous oligodendrocyte

population is thought to execute these func-
tions throughout the CNS (1), these cells were
originally described as morphologically hetero-
geneous (2). It is thus unclear whether oligo-
dendrocytes become morphologically diversified
during maturation through interactions within
the local environment or whether there is intrin-
sic functional heterogeneity (3–5). We analyzed

5072 transcriptomes of single cells expressing
markers from the oligodendrocyte lineage, isolated
from 10 distinct regions of the anterior-posterior
and dorsal-ventral axis of the mouse juvenile
and adult CNS (Fig. 1, A and B). Biclustering
analysis (6) (figs. S1B and S15), hierarchical clus-
tering (Fig. 1C), and differential expression anal-
ysis (tables S1 and S2) led to the identification
of 13 distinct cell populations. t-Distributed sto-
chastic neighbor embedding (t-SNE) (Fig. 2A)
supported by pseudotime analysis (fig. S2, A
and B) indicated a narrow differentiation path
connecting oligodendrocyte precursor cells (OPCs)
and myelin-forming oligodendrocytes, which then
diversify into six mature states.
Oligodendrocyte precursor cells coexpressed

Pdgfra and Cspg4 (Fig. 2B and figs. S1B and
S10), and 10% coexpressed cell cycle genes (fig.
S2, E and F), consistent with a cell division turn-
over of 19 days in the juvenile cortex (7). Several
genes (such as Fabp7 and Tmem100) identified
in OPCs were previously associated with astro-
cytes and radial glia (6) (figs. S1B, S3, and S10),
consistent with the origin of OPCs from radial
glia–like cells, as well as their capacity to gen-
erate astrocytes in injury paradigms (8).
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Differentiation-committed oligodendrocyte
precursors (COPs) were distinct from OPCs (be-
cause they lacked Pdgfra and Cspg4) and ex-
pressed Neu4 and genes involved in keeping
oligodendrocytes undifferentiated (Sox6, Bmp4,
and Gpr17) (9–11) (Fig. 2B and figs. S1B, S4, and
S10). COPs presented lower levels of cell cycle
markers (fig. S2, E and F) while expressing genes
involved in migration (Tns3 and Fyn) (fig. S10).
Newly formed oligodendrocytes (NFOL1 and
NFOL2) expressed genes induced at early stages
of differentiation (Tcf7l2 andCasr) (fig. S10) (12–14).
Whereas Gpr17 expression decreased in these
cells, we observed a peak in levels of Tcf7l2, which
is involved in oligodendrocyte differentiation
(fig. S10) (15).
Myelin-forming oligodendrocytes (MFOL1 and

MFOL2) expressed genes responsible for myelin
formation (Mal, Mog, Plp1, Opalin, and Serinc5)
(fig. S1, A and B). Single-molecule fluorescence
RNA in situ hybridization (smFISH) showed that
myelin-forming populations (Ctps+) were distinct
from mature oligodendrocytes (Klk6+) (Fig. 2C
and fig. S4D). Mature oligodendrocytes (MOL1
to MOL6) expressed late oligodendrocyte differ-
entiation genes (Klk6 and Apod) (12), as well as
genes present inmyelinating cells (Trf andPmp22)
(fig. S1B).
We identified a second Pdgfra+ population—

vascular and leptomeningeal cells (VLMCs)—
distinct from OPCs and segregated from all
oligodendrocyte lineage cells (Figs. 1C and 2A).
This population was also found when sorting
green fluorescent protein (GFP)–positive cells from
Pdgfra–histone 2B (H2B)–GFP (16) and Pdgfra-Cre-
RCE (LoxP-GFP) mice (17) (fig. S2C). These cells
exhibited low levels of Cspg4 (NG2) (Fig. 2B) and
specifically expressed Lum (Fig. 2B and fig. S4),
markers of the pericyte lineage (Vtn and Tbx18)
(Fig. 2B and figs. S1B and S2D), and laminins and
collagens characteristic of the basal lamina.Pdgfra+

and Sox10–VLMCswere localized on blood vessels
(Fig. 2D and figs. S4 and S11, A and B) and men-
inges (fig. S11, A to C). In contrast, COL1A1– and
PDGFRA+ OPCs were distributed in the paren-
chyma, in close association but not overlapping
with the vasculature (Fig. 2D and fig. S11B) (18).
VLMCs specifically exhibited markers present in
transcriptomes of OPCs isolated based on PDGFRA+

immunoreactivity (fig. S3) (14), most likely previ-
ously assigned to OPCs due to copurification.
We retrieved the 50 genes that better differ-

entiate every branch of the dendrogram plot
(Fig. 1C) and investigated their putative function
by gene ontology analysis (figs. S6 to S9 and
tables S1 and S2). COPs were enriched in cell fate
commitment and adhesion genes, whereas new-
ly formed oligodendrocytes (NFOL1 and NFOL2)
already presented genes involved in steroid bio-
synthesis, ensheathment of neurons, and cell pro-
jection organization (fig. S7). These populations
exhibited distinct expression of Tcf7l2, Itpr2,
Tmem2, and Pdgfa (Fig. 3A and fig. S4). ITPR2,
encoding an intracellular Ca2+ channel, was more
specific to oligodendrocytes than TCF7L2 and
exhibited close to 100% overlap with SOX10-
positive cells (fig. S5, A and D). We observed that
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ITPR2 immunoreactive cells were distinct from
PDGFRA+ OPCs (fig. S5B), and lineage tracing
confirmed that ITPR2+ cells are the progeny of
OPCs (figs. S2C and S5C). Of the OPC-derived
Pdgfra-H2B-GFP+ cells, 22 ± 2 and 25 ± 1.5%were
positive for ITPR2 in the somatosensory (S1) cor-
tex and the CA1 hippocampus, respectively, at
postnatal day 21 (P21), whereas 43 ± 3.7% double-
positive cells were found in the corpus callosum
(fig. S5C). The percentage of ITPR2+, Sox10+ cells
in the corpus callosum remained within the
same range at P7 (47 ± 4%) and P21 (37 ± 1%)
(Fig. 3C). Of the SOX10+ oligodendrocytes, 77 ± 4
and 48 ± 7% were positive for ITPR2 at P7 in the
CA1 hippocampus and the S1 cortex, respectively,
and decreased to less than 20% thereafter (Fig. 3, B
and C). This distribution of ITPR2+ oligodendro-
cytes correlates with active and prolonged differ-
entiation in the juvenile rat corpus callosum
(19). These tissues still maintained 10 to 20%
ITPR2+ cells at adult stages (P90 in Fig. 3C).
To investigate the potential function of ITPR2+

cells in the adult brain, we analyzed their dynamics
in the corpus callosum of mice engaged in motor
learning on the complex wheel, a process that
requires active myelination (20). In this paradigm,
running on the wheel leads to an increase in the
number of proliferating OPCs after 4 days, fol-
lowed by an increase in oligodendrocytes after
8 days (20).However, increasedmotor skills were
already apparent after 2 days in wild-type mice,
but not in mutant mice that were unable to syn-
thesize new myelin (20), suggesting that oligo-
dendrocyte lineage cells already contribute to
learning within the first 2 days. We found that
the number of ITPR2+, SOX10+ cells increased by

~50% in mice that ran on the complex wheel for
2 days, as compared with nonrunners (Fig. 3, D
and E). Thus, novel motor activity might trigger
rapid differentiation of OPCs into ITPR2+ com-
mitted precursors and newly formed oligoden-
drocytes that contribute to early learning by
facilitating electrical transmission, either through
the initiation of myelination or some other pre-
myelinating function.
We were unable to identify region- or age

(juvenile versus adult)–specific subpopulations
of OPCs in our data set (Figs. 2A and 4, A and
B). Nevertheless, 16% of the juvenile OPCs were
in the cell cycle [as determined by the simulta-
neous expression of more than two cell cycle
markers (fig. S2F)], compared with ~3% of the
adult OPCs. Similarly, COPs and newly formed
oligodendrocytes were present in all regions in
juvenile mice (Figs. 1C and 4A), revealing a com-
mon trajectory of differentiation between the
various regions (Fig. 2A). These populations were
also observed in the adult corpus callosum and
the S1 cortex, albeit in considerably lower num-
bers compared with those seen in juvenile mice
(Fig. 4B). On the basis of the distribution of cell
types in the juvenile mice, we classified regions
as immature (anterior regions such as the amyg-
dala and hippocampus), intermediate (corpus cal-
losum, zona incerta, striatum, and hypothalamus),
and mature (cortex and posterior regions such
as the dorsal horn and the substantia nigra ven-
tral tegmental area) (Fig. 4A and fig. S12). These
regional variations could result from different
timing of oligodendrocyte maturation during
postnatal development (21, 22). Myelination
first starts in the rat in posterior regions (dorsal

horn) around P7, whereas in anterior regions
of the CNS (amygdala, hippocampus, striatum,
and cortex) it occurs between P21 and P28 (23).
Different regions of the CNS were populated

by diverse mature oligodendrocytes (Fig. 1C and
fig. S12). Although some populations, such as
MOL5, were present throughout the regions,
other mature oligodendrocytes were enriched
in certain regions (fig. S12). Some of these mature
oligodendrocyte populations might be interme-
diate stages or have specific functions in juvenile
mice but then disappear in adulthood. Subsets of
MOL5 and MOL6 were mainly present in the S1
cortex and corpus callosum in the adult mice
(Fig. 4B). BecauseMOL5was already present in
several regions of the juvenile CNS (Fig. 1C and
fig. S12), final maturation of oligodendrocytes
might already be achieved in the juvenilemice in
certain regions, such as the dorsal horn, but only
in adulthood in others, such as the corpus callosum.
Gene ontology analysis indicated a divergence

already at the stage of myelin formation (fig. S8
and tables S1 and S2). Although mature oligo-
dendrocyte populations shared the expression of
many genes, some were differentially enriched
within populations (fig. S8 and tables S1 and S2),
indicating segregation of MOL1 to MOL4, en-
riched in lipid biosynthesis andmyelination genes
(Far1 and Pmp22) fromMOL5 andMOL6 (adult),
enriched for synapse parts such as Grm3 (meta-
botropic glutamate receptor, mainly enriched in
MOL6) and Jph4. We confirmed the presence of
GRM3 in the oligodendrocyte lineage (Pdgfra-
Cre-RCE) and specifically in CC1+ mature oligo-
dendrocytes in the juvenile cortex (fig. S11D).
EvenwithinMOL1 toMOL4, which were enriched
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inmyelin-related genes, specific populations (such
as MOL3) are more likely to be involved in syn-
aptic activity (fig. S9 and tables S1 and S2). Optic
nerve oligodendrocytes can form axon-myelinic
synapses, responding to axonal action potentials
via glutamate ionotropicN-methyl-D-aspartate re-
ceptors (24). We analyzed the expression of ion-
otropic and metabotropic glutamate receptors
and other ion channels, including transient re-
ceptor potential (TRP) (25) and potassium chan-
nels (fig. S14). Althoughmost glutamate receptor
subunits were expressed throughout oligoden-
drocyte lineage cells, there was preferential ex-
pression in some populations, with single cells
displaying combinations of subunits that might
determine function. Potassiumchannels andTRPs
were also expressed in a cell type–specificmanner,
displaying a scattered distribution within popu-
lations (fig. S14). Thus, the communication of
mature oligodendrocytes with neighboring neu-
ronsmight bemediated through specific receptors
and channels, following synaptic input or vesicu-
lar release.
Our study provides a high-resolution view of

the transcriptional landscape of a single neural
subtype across multiple regions of the CNS and
indicates a transcriptional continuum between
oligodendrocyte populations, with a subset rep-
resenting distinct but nevertheless connected
stages in the maturation path from OPCs to ma-
ture oligodendrocytes (fig. S16). Initial differen-
tiationwas uniform throughout the CNS, whereas
mature oligodendrocyte subtype specification oc-
curred later at postnatal stages and in a region-
specific manner. Each brain region appears to
optimize its circuitry by representation of dis-
tinct proportions and combinations of mature
oligodendrocytes. Our data also indicate that
ITPR2+ oligodendrocytes are involved in rapid
myelination in complex motor learning and thus
might be relevant in other active maturation
and myelination processes, such as remyelina-
tion in disease or lesion paradigms. Nonproli-
ferative Nkx2.2+ precursors that have a profile
consistent with these cells (fig. S10) have been

observed in lesions of patients with multiple
sclerosis (26). Therefore, by establishing oli-
godendrocytes as a transcriptionally heteroge-
neous cell lineage, our study might lead to new
insights into the etiology of myelin disorders,
such as multiple sclerosis, and might suggest
novel targets for their treatment.
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distinct populations. One population was responsive to motor learning, and another, with a different
mature oligodendrocytes. Transcriptional profiles diverged as the oligodendrocytes matured, building 
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Oligodendrocytes are best known for their ability to myelinate brain neurons, thus increasing the
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