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ABSTRACT  

Pattern separation is a fundamental brain computation that converts small 

differences in synaptic input patterns into large differences in action potential (AP) 

output patterns. Pattern separation plays a key role in the dentate gyrus, enabling 

the efficient storage and recall of memories in downstream hippocampal CA3 

networks. Several mechanisms for pattern separation have been proposed, 

including expansion of coding space, sparsification of neuronal activity, and 

simple thresholding mechanisms. Alternatively, a winner-takes-all mechanism, in 

which the most excited cells inhibit all less-excited cells by lateral inhibition, might 

be involved. Although such a mechanism is computationally powerful, it remains 

unclear whether it operates in biological networks. Here, we develop a full-scale 

network model of the dentate gyrus, comprised of granule cells (GCs) and 

parvalbumin+ (PV+) inhibitory interneurons, based on experimentally determined 

biophysical cellular properties and synaptic connectivity rules. Our results 

demonstrate that a biologically realistic principal neuron–interneuron (PN–IN) 

network model is a highly efficient pattern separator. Mechanistic dissection in the 

model revealed that a winner-takes-all mechanism by lateral inhibition plays a 

crucial role in pattern separation. Furthermore, both fast signaling properties of 

PV+ interneurons and focal GC–interneuron connectivity are essential for efficient 

pattern separation. Thus, PV+ interneurons are not only involved in basic 

microcircuit functions, but also contribute to higher-order computations in 

neuronal networks, such as pattern separation.  

 

Key words: GABAergic interneurons, PV+ interneurons, lateral inhibition, granule cells, 

hippocampus, dentate gyrus, pattern separation, winner-takes-all mechanism  
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INTRODUCTION 

A fundamental question in neuroscience is to understand how higher-order computations 

in the brain are implemented at the level of synapses, neurons, and neuronal networks. 

A key computation in the brain is pattern separation, a process that converts slightly 

different input patterns into highly different action potential (AP) output patterns1–3. Pattern 

separation is thought to play a particularly important role in the memory circuits of the 

hippocampus, where separation computations at the input layer, the dentate gyrus4, 

facilitate reliable storage and recall of memories in the downstream layer, the CA3 region2,

5–7. However, although pattern separation has an important function in memory circuits, 

the underlying mechanisms remain elusive.  

In the cerebellum, a circuit where pattern separation is relevant for precise motor 

control8, synaptic divergence from a small to a large number of neurons and sparsification 

of activity are key factors9–11. However, as the connectivity between synaptic input and 

cerebellar granule cells (GCs) is extremely sparse11, generalization to the dentate gyrus 

is not straightforward. In the olfactory bulb, a circuit where pattern separation converts 

broad activation of sensory olfactory neurons into specific activation of mitral cells, a 

winner-takes-all mechanism mediated by lateral inhibition contributes to pattern 

separation12–21. However, in olfactory circuits lateral inhibition is mediated by specialized 

dendro-dendritic synapses, and the number of inhibitory GCs exceeds the number of 

excitatory mitral cells by more than an order of magnitude22. Whether lateral inhibition 

contributes to pattern separation in the dentate gyrus, where signaling is mediated by 

axo-dendritic synapses and excitatory neurons greatly outnumber inhibitory cells23, 

remains unclear24.  

We recently found that in the dentate gyrus lateral inhibition by parvalbumin-

expressing (PV+) interneurons is more abundant than in any other studied brain region25, 

consistent with the idea that lateral inhibition implements a winner-takes-all mechanism 

underlying pattern separation25. However, principal neuron–interneuron (PN–IN) 

connectivity in the dentate gyrus is highly focal, which seems incompatible with the central 

idea of that model, that a winner should be able to globally suppress all non-winners. To 

clarify the role of lateral inhibition in pattern separation in the dentate gyrus, we 
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constructed a network model of this brain area based on experimentally determined 

biophysical cellular properties and synaptic connectivity rules. In contrast to several 

previous studies, the model was implemented in full-scale. We quantitatively analyzed 

pattern separation in the model to address three main questions. First, is a PN–IN network 

with biological properties able to perform efficient pattern separation? Second, what is the 

role of lateral inhibition in pattern separation? Third, how do the fast signaling properties 

of GABAergic interneurons26 and the focal PN–IN connectivity25 impact on pattern 

separation? A preliminary account of this work has been published in abstract form27.  

 

RESULTS  

A winner takes-all-mechanism is able to decorrelate patterns 

Pattern separation is a network computation that converts highly overlapping synaptic 

input patterns into minimally overlapping AP output patterns. The basic principle is 

illustrated in Fig. 1a. When two highly overlapping input patterns (A and B) are applied at 

the input of a neuronal population (Fig. 1a, top), two largely non-overlapping output 

patterns (A’ and B’) are generated at the output of the population (Fig. 1a, bottom). 

Quantitatively, the correlation coefficients for the output patterns (Rout = r(A’, B’)) are 

smaller than the corresponding correlation coefficients of the input patterns (Rin = r(A, B)). 

Thus, when Rout is plotted against Rin for all pairs of patterns, data points should be 

located below the identity line (Fig. 1b).   

 To test these predictions, we used the simplest possible implementation of a 

winner-takes-all mechanism: an infinite-size network incorporating a thresholding 

mechanism (Fig. 1c). Under the assumption that input patterns follow a bivariate 

Gaussian distribution (Fig. 1c), Rout can be analytically computed for any given Rin and 

average activity level  using Hoeffding’s lemma28 (see Methods). As expected for a 

pattern separation mechanism, Rout–Rin curves were consistently located below the 

identity line (Fig. 1d). To assess whether this mechanism also works in finite-size 

networks, we performed numerical simulations of input and output patterns (Fig. 1e). 

Random real number input patterns were drawn from a bivariate Gaussian distribution. 
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Interestingly, the parameter dependence was more complex than predicted from the 

analytical solution for the infinite-size network. For small neuronal populations (nCells = 

5,000), reduction of activity  increased . However, below a certain activity level, the 

monotonic relation between Rout and Rin was disrupted (Fig. 1e, top, right). In contrast, 

for larger neuronal populations (nCells = 50,000), the monotonic relation between input and 

output was maintained over a wider range (Fig. 1e, bottom).  

 To characterize these complex phenomena, we introduced three quantitative 

measures of pattern separation (Fig. 1f; see Methods). First, we measured the efficacy 

of pattern separation as the normalized area between the data points and the identity 

line (Fig. 1f, top). Second, we computed the reliability of pattern separation  from the 

rank correlation coefficient of the Rout–Rin data (Fig. 1f, center). Finally, we determined 

the maximal gain of pattern separation  from the slope of the input-output correlation for 

Rin  1 (Fig. 1f, bottom). For the infinite-size networks,  approached values as high as 

0.75 for low values of . For the finite-size networks, pattern separation efficacy  

approached similar values. However, pattern separation reliability  was markedly 

reduced for low levels of  ( = 0.74 for  = 0.001 and nCells = 5,000;  = 0.94 for  = 

0.001 and nCells = 50,000). In conclusion, these results provide a proof-of-principle that a 

winner-takes-all mechanism is able to separate patterns. However, the performance of 

the mechanism depends on activity level and network size.  

 

A biologically realistic PN–IN network model is an efficient pattern separator 

To explore whether the winner-takes-all mechanism of pattern separation works in 

biologically realistic networks resembling the dentate gyrus, we developed a model of 

pattern separation based on empirical experimental data (Fig. 2; Supplementary 

Figure 1; Table 1). The network was created in full-scale, with 500,000 GCs29, 

represented as leaky integrate-and-fire neurons, and 2,500 PV+ interneurons, 

implemented as single-compartment conductance-based models (Fig. 2a). Excitatory 

GC–PV+ interneuron synapses, inhibitory PV+ interneuron–GC synapses, mutual 

inhibition, and gap junctions were implemented based on the detailed description of 
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functional connectivity obtained by multi-cell recordings25. At the network input, 50,000 

entorhinal cortex cells (ECs) were attached23. The EC–GC connectivity was constrained 

by the width of the entorhinal cortex neuron axons (20% of the dentate gyrus along the 

longitudinal axis)30 and the number of spines on the dendrites of GCs (~5,000)31,32. As 

gamma oscillations may contribute to a winner-takes-all mechanism17, an inhibitory 

conductance was initiated at the onset of each simulation epoch17,33. Since gamma 

oscillations show high power in the dentate gyrus34–36, this also contributed to the realism 

of the model.  

We then analyzed pattern separation in the biologically realistic, full-size network 

model. One-hundred correlated binary activity patterns were applied in ECs, and activity 

was simulated in GCs and interneurons (Fig. 2b; Supplementary Figure 1; Table 1). 

Whereas all interneurons generated spikes, the activity in the GC population was only 

0.012, indicating sparse coding (Fig. 2b). Input-output correlation curves were located 

below the identity line, indicating efficient pattern separation in the model (Fig. 2c–e). For 

the standard network parameters, was 0.560, indicating a high efficacy of pattern 

separation (Fig. 2c). was 0.98, implying a high reliability of the pattern separation 

process (Fig. 2d). Finally, was 11.1, suggesting a high gain of pattern separation, i.e. 

the ability to convert small differences in input patterns into large differences in output 

patterns (Fig. 2e). Similar results were obtained when the tonic EC–GC drive was 

replaced by a random train of fast excitatory synaptic waveforms of comparable strength 

(Supplementary Figure 2). Likewise, efficient pattern separation was also observed in a 

network model that incorporated feedforward activation of interneurons (Supplementary 

Figure 3). Finally, efficient pattern separation was observed in a network model with 

synaptic amplitude fluctuations, i.e. trial-to-trial (“type 1”) variability and synapse-to-

synapse (“type 2”) variability (Supplementary Figure 4). In conclusion, a biologically 

realistic PN–IN network is able to efficiently and reliably perform pattern separation 

computations.  

Pattern separation in the dentate gyrus may facilitate the storage and recall of 

information in downstream CA3 networks2,5–7. For example, pattern separation may avoid 

that correlated representations are confused or erased by catastrophic interference18. To 
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test these predictions, we attached our dentate gyrus network model to a single-layer 

perceptron decoder endowed with backpropagation learning, intended to represent the 

CA3 network (Fig. 2f)11,37. We trained the perceptron decoder to divide patterns into 10 

randomly assigned classes, and assessed the learning rate by plotting the classification 

error against the number of iterations. To assess the effects of pattern separation, we 

compared the learning rates of the perceptron decoder for “unprocessed” EC patterns 

and “processed” GC patterns. Remarkably, the learning rate of the perceptron decoder 

was substantially faster for the GC patterns than for the corresponding EC patterns (Fig. 

2g, h). These results demonstrate that the decorrelation generated by pattern separation 

in the dentate gyrus can be beneficial for computations in downstream networks, resulting 

in an improvement in the storage of information.  

  

Lateral inhibition is a primary mechanism underlying pattern separation  

To identify the key mechanisms underlying pattern separation in the network model, we 

systematically varied the biologically relevant parameters (Fig. 3). First, we changed the 

amplitude of the excitatory synaptic drive (Iµ) and the inhibitory gamma input (Jgamma) in 

the network, parameters expected to affect thresholding properties of input-output 

conversion (Fig. 3a). Pattern separation was highly dependent on both parameters. 

Contour plot analysis revealed that the combination of small excitatory synaptic drive with 

small gamma input provided efficient pattern separation (Fig. 3b). As the excitatory drive 

was increased, a higher inhibitory gamma input was required to maintain the efficacy of 

pattern separation. Thus, the balance between excitatory drive and inhibitory gamma 

input determined the efficacy of pattern separation.  

Next, we determined how the properties of the synaptic input from ECs via the 

perforant path determined pattern separation9–11,38. To address this, we varied the 

number of entorhinal cells (nEC), the average EC activity level (EC), and peak value and 

width of EC-GC connectivity (cEC–GC and EC–GC; Fig. 3c)30,39,40. Increasing the number of 

ECs decreased , whereas decreasing the number increased it (Fig. 3c, top left). 

Likewise, increasing the average EC activity decreased , whereas decreasing the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2019. . https://doi.org/10.1101/647800doi: bioRxiv preprint 

https://doi.org/10.1101/647800


8 

activity had the reverse effect (Fig. 3c, top, right). Furthermore, increasing the EC–GC 

connection probability and the width mostly decreased , whereas decreasing probability 

or width led to opposite changes (Fig. 3c, bottom; Supplementary Figure 5). Effects of 

connection probability and width were similar when the GC drive values were randomly 

shuffled, indicating that spatial correlations in the input played only a minor role in pattern 

separation (Supplementary Figure 6). Interestingly, the effects of the nEC : nGC ratio and 

cEC–GC remained relatively minor even when the parameters were varied over a much 

wider range in a simplified system comprised of ECs, GCs, and a winner-takes-all 

mechanism in which the threshold was set according to the specified activity level 

(Supplementary Figure 7). Thus, the properties of the excitatory synaptic input influence 

pattern separation, but quantitatively play a relatively minor role.  

Finally, we tested the contribution of lateral inhibition to pattern separation in the 

network model (Fig. 3d). Complete elimination of both excitatory E–I and inhibitory I–E 

synapses severely impaired pattern separation. Contour plot analysis of  against Iµ and 

Jgamma in the absence of lateral inhibition revealed  values > 0.5 were only obtained in a 

small part of the parameter space (Fig. 3d, left). Furthermore, reducing the strength of 

either excitatory E–I or inhibitory I–E connections (JE–I or JI–E) substantially reduced 

pattern separation efficacy  (Fig. 3d, right). Similarly, reducing the peak connectivity or 

connectivity width of either excitatory E–I or inhibitory I–E connections (cE–I and E–I, cI–E 

and I–E) markedly affected pattern separation (Supplementary Figure 8). Thus, 

interfering with disynaptic inhibition at multiple levels uniformly decreased the efficacy of 

pattern separation. Taken together, these results indicate that lateral inhibition plays an 

essential role in pattern separation.   

Fast signaling and focal connectivity of PV+ interneurons are necessary for 

efficient pattern separation  

If lateral inhibition plays a key role for pattern separation in the network, how do functional 

properties and connectivity rules affect this process? A hallmark property of PV+ 

GABAergic interneurons is their fast signaling at the level of synaptic input, input-output 
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conversion, and synaptic output26,41–43. To test whether these fast signaling properties are 

relevant for pattern separation, we systematically varied the corresponding parameters in 

the model (Fig. 4a, b). Increasing the synaptic delay at excitatory GC–PV+ interneuron 

input synapses markedly impaired pattern separation (Fig. 4a, b, top left). Similarly, 

prolonging the time constants of the synaptic currents at excitatory GC–PV+ interneuron 

synapses reduced pattern separation performance (Fig. 4a, b, top right). Furthermore, 

increasing the membrane time constant of the PV+ interneurons reduced pattern 

separation performance (Fig. 4a, b, bottom left). Finally, increasing the synaptic delay at 

inhibitory PV+ interneuron–GC output synapses substantially impaired pattern separation 

(Fig. 4a, b, bottom right; Supplementary Figure 9). Thus, the fast signaling properties 

of PV+ interneurons are critical for the pattern separation process.  

 The high pattern separation efficacy observed in the network model was 

surprising, because the model contains focal connectivity rules for both excitatory E–I and 

inhibitory I–E synapses in dentate gyrus25. In contrast, an efficient winner-takes-all 

mechanism may require lateral inhibition with long-range connectivity to ensure that a 

winner suppress all non-winners in the network. To resolve this apparent contradiction, 

we explored the effects of focal E–I and I–E connectivity in the network model (Fig. 4c–

e). To address the effects of focal connectivity in isolation, we maintained the total 

connectivity (i.e. the area under the connection probability–distance curve) through 

compensatory changes of maximal connection probability (Fig. 4c). Increasing the width 

of connectivity for either excitatory E–I or inhibitory I–E synaptic connections reduced ; 

particularly large changes were observed when focal connectivity was fully replaced by 

global random connectivity (Fig. 4c; Supplementary Figure 9). Thus, focal PN–IN 

connectivity supported pattern separation more effectively than global connectivity. 

 Next, we examined the effects of combined changes in the width of excitatory E–

I and inhibitory I–E connectivity (Fig. 4d). As in the previous set of simulations, we 

maintained the total connectivity. Contour plot analysis confirmed that focal connectivity 

supported pattern separation more effectively than broad connectivity. However, the 

effects of changes in the width of excitatory E–I and inhibitory I–E connectivity were 

asymmetric. Thus, a high  was obtained in a configuration in which the excitatory E–I 
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was more focal than the inhibitory I–E connectivity (Fig. 4d). This was consistent with 

experimental observations that excitatory E–I is more focal than inhibitory I–E connectivity 

and that lateral inhibition is highly abundant in the circuit25. In conclusion, lateral inhibition 

effectively supported pattern separation. 

 Why does focal connectivity support pattern separation better than global 

connectivity? One possibility is that the effects of focal connectivity might be a 

consequence of changes in average latency, which are shorter in a focally connected 

network than in an equivalent random network. To test this hypothesis, we examined the 

effects of changes in axonal AP propagation velocity at excitatory E–I and inhibitory I–E 

synapses on pattern separation. Slowing AP propagation reduced , whereas 

accelerating propagation increased it (Fig. 4e, left). To test whether changes in synaptic 

latency fully account for the functional differences between focal and random networks, 

we changed the connectivity width while maintaining the kinetic properties of disynaptic 

inhibition through compensatory changes of AP propagation velocity (Fig. 4e, right). 

Notably, changes in propagation velocity almost completely compensated the effects of 

changes in connectivity. Thus, focal connectivity and fast biophysical signaling in GC–

PV+ interneuron microcircuits play synergistic roles in providing rapid lateral inhibition, an 

essential requirement for efficient pattern separation.  

  

DISCUSSION 

A fundamental question in neuroscience is how the properties of synapses and 

microcircuits contribute to higher-order computations in the brain. Our network model 

provides some answers to this central question, for a specific network function (pattern 

separation) and a specific circuit (dentate gyrus). First, our results provide a proof-of-

principle that a biologically realistic network model is a highly efficient pattern separator. 

Second, our results show that lateral inhibition plays a critical role in the pattern separation 

process. Finally, they indicate that fast biophysical signaling properties of PV+ 

interneurons and focal connectivity are essential for efficient pattern separation.  
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Previous work in the cerebellum suggested that expansion of coding space is a 

key mechanism underlying pattern separation9–11. Our computational analysis confirms 

that the connectivity rules between ECs and GCs play an important role in pattern 

separation. First, the number of ECs is relevant, with a smaller number of neurons 

resulting in more efficient pattern separation (Fig. 3c). This is consistent with previous 

models, which emphasized the role of code expansion9–11,38. Second, the average EC–

GC connectivity is important, with sparse connectivity enhancing pattern separation 

performance (Fig. 3c). Although this is also true for the cerebellum11, the mechanisms 

may be different in the hippocampus, because GCs receive a much higher number of 

synaptic inputs (> 1,000)31,32 compared to GCs in cerebellum (~5)11. Finally, a mix of 

structured and random EC–GC connectivity is optimal for the pattern separation 

mechanism (Supplementary Figure 6). However, the effects of these parameters on 

pattern separation efficacy are moderate. Thus, the rules of EC–GC connectivity, 

although clearly important, are not the main determinants of pattern separation in the 

dentate gyrus.  

Previous studies suggested a major role of inhibition in pattern separation in the 

olfactory bulb of mammals and zebrafish and in the equivalent mushroom body of 

Drosophila18–20. Furthermore, a role of inhibition has been suggested in the 

hippocampus24,44. Recent functional connectivity analysis between GCs and interneurons 

revealed that lateral inhibition is uniquely abundant in the dentate gyrus25. Here, we show 

that lateral inhibition inserted into a biologically inspired network model generates a 

powerful winner-takes-all mechanism. Both excitatory E–I synapses and inhibitory I–E 

synapses are necessary for pattern separation (Fig. 3d). Remarkably, the winner-takes-

all mechanism based on lateral inhibition works in a network comprised of a relatively 

small number of neurons. Winner-takes-all computations are also performed by networks 

of perceptrons16. However, in such implementations, pattern separation requires a multi-

layer structure with a much larger number of neuron-like elements and synaptic 

connections16. Thus, lateral inhibition represents a compact, resource-efficient 

implementation of a winner-takes-all computation.  
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Our results reveal two novel determinants of the efficacy of pattern separation. The 

first key factor is fast signaling in GABAergic cells. This may have been expected, 

because sufficient speed is required to ensure that a small number of winners suppresses 

a large number of non-winners (Fig. 4a, b). Lateral inhibition in the dentate gyrus is 

primarily mediated by PV+ interneurons, since these interneurons are more connected 

than other interneurons (such as somatostatin+ or cholecystokinin+ interneurons)25,45. 

Furthermore, PV+ interneurons express an extensive repertoire of fast biophysical 

signaling mechanisms at the level of synaptic input, AP initiation, and synaptic 

output26,41,46. Thus, PV+ interneurons are prime candidates for the neuronal 

implementation of a winner-takes-all mechanism by lateral inhibition. However, the 

contribution of other interneuron subtypes cannot be excluded.  

The second key factor is focal connectivity between principal neurons and 

interneurons, which substantially enhances pattern separation. This is counter-intuitive, 

because a long-range divergent output may be useful to suppress all non-winners 15,16. 

However, our simulations show that networks with focal connectivity are more effective 

than networks with wide connectivity (Fig. 4c). Furthermore, the pattern separation 

mechanism works well if the connectivity is asymmetric, with excitatory E–I synapses 

showing narrower connectivity and inhibitory I–E synapses wider connectivity, as 

observed experimentally (Fig. 4d)25.  

Our results demonstrate that pattern separation can accelerate learning by a 

downstream perceptron decoder (Fig. 2f–h). Does this also happen in the biological 

network? Hippocampal GCs connect to CA3 pyramidal neurons via hippocampal mossy 

fiber synapses5. Because of their large size, these synapses are often viewed as 

“detonator” synapses47. If the mossy fiber synapses are detonators, one would expect 

that the decorrelated signals are relayed to the CA3 network, and trigger efficient storage 

of information in CA3–CA3 synapses, similar to the perceptron6,7. However, recent work 

suggests that the signaling properties of mossy fiber synapses are more complex, since 

subdetonation and conditional detonation can coexist with plasticity-dependent full 

detonation48. If the mossy fiber output would be slightly below the detonation threshold, 

this may introduce another mechanism of synaptic integration and thresholding into the 
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network, which could amplify the degree of pattern separation. Large-scale network 

simulations including both dentate gyrus and CA3 will be needed to further address this 

possibility.  

Taken together, the present results add to the emerging view that PV+ interneurons 

are not only involved in basic microcircuit functions, such as feedforward and feedback 

inhibition, but also contribute to higher-order computations in neuronal networks26. 

Consistent with this idea, pharmacological analysis revealed that inhibition plays a role in 

pattern separation in behavioral experiments44. More specific optogenetic and 

pharmacogenetic strategies will be needed to further delineate the contribution of PV+ 

interneurons and other interneurons to these processes. Finally, since accumulating 

evidence suggests that PV+ interneuron dysfunction is associated with brain disorders, 

including schizophrenia26, it will be important to evaluate whether pattern separation is 

impaired and how exactly inhibition contributes to circuit dysfunction in these diseases49.  

 

 

METHODS 

Topology of a full-size dentate gyrus network model  

The pattern separation network model consists of two layers, the first layer representing 

the entorhinal cortex, with 50,000 ECs, and the second layer representing the dentate 

gyrus, with 500,000 GCs and 2,500 PV+ interneurons (INs). First and second layer were 

connected by EC–GC synapses, representing the perforant path input to the dentate 

gyrus. A winner-takes-all mechanism mediated by lateral inhibition was implemented by 

connecting GCs and INs by excitatory E–I synapses in one direction and by inhibitory I–

E synapses in the other direction.   

 Unlike other models of dentate gyrus circuits24,50, the model was implemented in 

full size. The number of GCs was chosen to represent the dentate gyrus of one 

hemisphere in adult laboratory mice29. Full-scale implementation was necessary: (1) to 

increase the realism of the simulations, (2) to be able to implement measured 
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macroscopic connectivity rules without scaling51, and (3) to simulate sparse coding 

regimes, which were unstable in smaller networks (Fig. 1e).  

The model was designed to incorporate the connectivity rules of PV+ interneurons 

and GCs in the dentate gyrus25. Other types of interneurons, such as SST+ hilar 

interneurons with axons associated with the perforant path or CCK+ hilar interneurons 

with axons associated with the commissural / associational pathway45,52–54, were not 

explicitly included because of their low connectivity25 and their slower signaling speed26. 

While the first property of SST+ or CCK+ interneurons would make them less likely to be 

activated by GC activity, the second property would make them less suitable for the 

neuronal implementation of a winner-takes-all mechanism17. In total, the conclusions of 

the present paper were based on 594 full-scale simulations.  

 

Implementation of inhibitory interneurons 

Interneurons were implemented as single-compartment, conductance-based neurons to 

capture the electrical properties of PV+ interneurons. Membrane potential was simulated 

by solving the equation: 

ௗ௏

ௗ௧
ൌ

ଵ

஼೘
  ሺ𝐼ௗ௥௜௩௘ െ 𝐼ே௔ െ 𝐼௄ െ 𝐼௅ሻ ,          (Eq. 1) 

where V is membrane potential, t is time, Cm is membrane capacitance, Idrive is driving 

current, while INa, IK, and IL represent sodium, potassium and leakage current, 

respectively. INa was modeled as  

𝐼ே௔ ൌ  𝑔ே௔ 𝑚ଷℎ ሺ𝑉 െ  𝑉ே௔) ,               (Eq. 2) 

where 𝑔ே௔ is the maximal sodium conductance, m is the activation parameter, h is the 

inactivation parameter, and VNa represents the sodium ion equilibrium potential.  

Similarly, IK was modeled according to the equation 

𝐼௄ ൌ  𝑔௄ 𝑛ସ ሺ𝑉 െ 𝑉௄) ,                    (Eq. 3) 
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where 𝑔௄ is the maximal potassium conductance, n is the activation parameter, and VK 

represents the potassium ion equilibrium potential.  

Finally, IL was given as 

𝐼௅ ൌ  𝑔௅ ሺ𝑉 െ  𝑉௅) ,                    (Eq. 4) 

where gL is leakage conductance and VL is corresponding reversal potential.  

State parameters m, h, and n were computed according to the differential equation 

ௗ௠

ௗ௧
ൌ  ௠ ሺ1 െ  𝑚ሻ ൅ ௠ 𝑚                           (Eq. 5) 

and equivalent equations for h and n.  

m, h, n values and m, h, n values were calculated according to the equations m = 

0.1 ms-1 x −(V+35 mV) / {Exp[−(V+35 mV)/10 mV] – 1}, m = 4 ms-1 x 

Exp[−(V+60 mV)/18 mV], h = 0.35 ms-1 x Exp[−(V+58 mV)/20 mV], h= 5 ms-1 / 

{Exp[−(V+28 mV)/10 mV] + 1}, n = 0.05 ms-1 x −(V+34 mV) / 

{Exp[−(V+34 mV)/10 mV] − 1}, and n = 0.625 ms-1 x Exp[−(V+44 mV)/80 mV]55. Single 

neurons were assumed to be cylinders with diameter and length of 70 µm, giving a 

surface area of 15,394 µm2 and an input resistance of 65 M42. Neurons showed a 

rheobase of 39 pA and a fast-spiking, type I AP phenotype56, as characteristic for PV+ 

interneurons26. Maximal conductance values 𝑔ே௔ , 𝑔௄ , and gL were set to 35 mS cm−2, 9 

mS cm−2, and 0.1 mS cm−2, respectively55. VNa and VK equilibrium potentials were 

assumed as 55 mV and −90 mV, respectively. Finally, VL was set to −65 mV.  

 

Implementation of GCs 

GCs were implemented as leaky integrate-and-fire (IF) spiking neurons. To enable the 

integration of excitatory and inhibitory synaptic events with different kinetics, the standard 

IF model was extended as follows57:  

The time course of synaptic excitation was described by the differential equation 
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ௗ௘

ௗ௧
ൌ  െ𝑘௘ 𝑒 ,    (Eq. 6) 

where ke is the synaptic excitation rate constant, i.e. the inverse of the time constant.  

Likewise, the time course of synaptic inhibition was described by the differential 

equation 

ௗ௜

ௗ௧
ൌ  െ𝑘௜ 𝑖 ,   (Eq. 7) 

where ki is the synaptic inhibition rate constant.  

Finally, the firing of the neuron was controlled by a membrane state variable v; 

when v reaches one, the cell fires, which resets the membrane by returning v to 0. The 

time course of v was determined by the differential equation 

ௗ௩

ௗ௧
ൌ  െ𝑘௠ 𝑣 ൅ 𝑎௘ 𝑒 ൅  𝑎௜ 𝑖 ൅  𝑖ௗ௥௜௩௘ ,    (Eq. 8) 

where km is inverse of the membrane time constant, ae and ai are amplitudes of synaptic 

events, and idrive represents the excitatory drive any given neuron receives57. Excitation 

time constant, inhibition time constant, and membrane time constant were set to 3, 10, 

and 15 ms, respectively25,32,43. The refractory period was assumed as 5 ms. Note that in 

the IF model v, e, i, and idrive are unitless. 

Implementation of synaptic interconnectivity 

Synapses between neurons were placed with distance-dependent probability. 

Normalized distance was cyclically measured as  

      x = 0.5 – abs{abs[(i / imax – j / jmax)] – 0.5} ,  (Eq. 9) 

where i and j are indices of pre- and postsynaptic neurons, imax and jmax are corresponding 

maximum index values, and abs(r) is the absolute value of a real number r. Connection 

probability was then computed with a Gaussian function as   

    p(x) = c 𝑒ି ೣమ

మ మ ,  (Eq. 10) 
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where c is maximal connection probability (cE–I, cI–E, cI–I, and cgap, respectively) and  is 

the standard deviation representing the width of the distribution (E–I, I–E, I–I, and gap; 

Table 1).  

Connection probability between ECs and GCs was computed from a Gaussian 

function with peak connection probability of 0.2 and a standard deviation of 500 µm, to 

represent the divergent connectivity from the entorhinal cortex to the dentate gyrus30,39,40. 

Binary activity patterns in upstream ECs were converted into patterns of excitatory drive 

of GCs. Although this drive was primarily intended to represent input from entorhinal 

cortex neurons, it may include contributions from other types of excitatory neurons (e.g. 

mossy cells or CA3 pyramidal cells)50.  

Excitatory GC–interneuron synapses, inhibitory interneuron–GC synapses, and 

inhibitory interneuron–interneuron synapses were incorporated by random placement of 

NetCon objects in NEURON57; gap junctions were implemented by random placement of 

pairs of point processes. For excitatory GC–interneuron synapses and inhibitory 

interneuron–interneuron synapses, synaptic events were simulated using the Exp2Syn 

class of NEURON. For excitatory GC–interneuron synapses, we assumed rise,E = 0.1 ms, 

decay,E = 1 ms, and a peak conductance of 8 nS25,41. For inhibitory interneuron–

interneuron synapses, we chose rise,I = 0.1 ms, decay,I = 2.5 ms, and a peak conductance 

of 16 nS25,58,59. For inhibitory interneuron–GC synapses, the synaptic weight was chosen 

as 0.025 (unitless, because GCs were modelled as IF neurons). For all chemical 

synapses, synaptic latency was between 0 and 25 ms according to distance between pre- 

and postsynaptic neuron. Gap junction resistance was assumed as 300 M, 

approximately five times the input resistance of the cell25,58,59. Synaptic reversal potentials 

were 0 mV for excitation and −65 mV for inhibition. The maximal length of the 

hippocampal network was assumed as 5 mm, consistent with anatomical descriptions in 

mice60.  

Detailed implementation and simulations  
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Simulations of network activity were performed using NEURON version 7.6.257 in 

combination with Mathematica version 11.3.0.0 (Wolfram Research). Simulations were 

tested on reduced-size networks running on a PC using Windows 10. Full-size 

simulations were run on x86_64-based shared memory systems (Supermicro or SGI UV 

3000 systems) using GNU/Linux (Debian, SLES).  

Simulations were performed in four steps (Supplementary Figure 1). First, we 

computed random binary activity patterns in ECs. To generate input patterns with defined 

correlations over a wide range, 100 uncorrelated random vectors ai of size nEC were 

computed, where individual elements are pseudorandom real numbers in range of  0  to 

1 and nEC is the number of ECs. Vectors were transformed into correlated vectors as r x 

a1 + (1 − r) x ai, where a1 is the first random vector and r corresponds to the correlation 

coefficient. r was varied between 0.1 and 1. Finally, a threshold function f(x) = H(x − ) 

was applied to the vectors, where H is the Heaviside function and  is the threshold that 

determines the activity level in the pattern. Empirically, 100 input patterns were sufficient 

to continuously cover the chosen range of input correlations. Unless stated differently, the 

average activity in EC neurons (EC), i.e. the proportion of spiking cells, was assumed to 

be 0.1.  

Second, the patterns in the upstream neurons were converted into patterns of 

excitatory drive in GCs, by multiplying the activity vectors with the previously computed 

connectivity matrix between ECs and GCs. Unless otherwise indicated, the mean tonic 

current value was set to 1.8 times the threshold value of the GCs (i.e. Iµ = 1.8; unitless, 

since GCs were implemented as IF units; Table 1). In a subset of simulations 

(Supplementary Figure 2), the tonic current was replaced by Poisson trains of excitatory 

postsynaptic currents (EPSCs) to convey a higher degree of realism. In these simulations, 

events were simulated by NetStim processes. In another subset of simulations 

(Supplementary Figure 3), the tonic excitatory drive computed from the EC activity and 

the EC–GC connectivity was applied in parallel to GCs and INs after appropriate scaling 

to represent feedforward inhibition.   
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Third, we computed the activity of the network for all 100 patterns. Simulations 

were run with 5 µs fixed time step over a total duration of 50 ms. At the beginning of each 

simulation, random number generators were initialized with defined seeds to ensure 

reproducibility. At the beginning of each simulation, an inhibitory synaptic event of weight 

1 (relative to threshold) was simulated in all GCs to mimic recovery from a preceding 

gamma cycle17. Spikes were detected when membrane potential reached a value of 1 in 

the GCs and 0 mV in the interneurons. Subsequently, spike times were displayed in raster 

plot representations. Furthermore, 100 binary output vectors were computed, by setting 

the value to 1 if a cell generated  1 spikes in the time interval 0   t  50 ms, and to 0 

otherwise.  

Finally, Pearson’s correlation coefficients were computed for all pairs of patterns 

(൫ଵ଴଴
ଶ ൯ = 4,950 points), at both input (tonic excitatory drive vector) and output level (spike 

vector) in parallel, and output correlation coefficients (Rout) were plotted against input 

correlation coefficients (Rin). Pattern separation was quantitatively characterized by three 

parameters: (1) The efficacy of pattern separation () was quantified by an integral-based 

index, defined as the area between the identity line and the Rout versus Rin curve, 

normalized by the area under the identity line (
ଵ

ଶ
). Thus,  

                  =     2 ׬ (x - fሺ𝑥ሻሻ 𝑑𝑥 
ଵ 

௫ୀ଴  ,      (Eq. 11) 

where f(x) represents the input-output correlation function. In practice, f(x) was 

determined by linear interpolation of data points after sorting by Rin values, averaging of 

points with same Rin, and including points (0|0) and (1|1). Based on these definitions, a  

value close to 1 would correspond to an ideal pattern separator. In contrast,  = 0 would 

represent pattern identity, whereas  < 0 would indicate pattern completion7. (2) The 

reliability of pattern separation () was quantified by the Pearson’s correlation coefficient 

of the ranks of all Rout versus the ranks of all Rin data points. An ideal pattern separator 

will maintain the order of pairwise correlations: If a pair of patterns is more similar than 

another pair at the input level, it will be also more similar at the output level. Thus, for an 

ideal pattern separator, will be close to 1. (3) Finally, the gain of pattern separation () 
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was quantified from the maximal slope of the Rout versus Rin curve. In practice, this value 

was determined from the first derivative of a 5th or 10th-order polynomial function f(x) fit to 

the Rout versus Rin data points as  lim
௫→ ଵ 

ቀௗ௙ሺ௫ሻ

ௗ௫
ቁ;   f(x) was constrained to pass through points 

(0|0) and (1|1). A value >> 1 would correspond to an ideal pattern separator. In contrast, 

 = 1 would represent pattern identity, whereas  < 1 would indicate pattern completion7. 

 

Analytical analysis of pattern separation 

To describe the pattern separation process in a simple mathematical form (Fig. 1c, d), 

we obtained an analytical solution for the correlation coefficient of a bivariate Gaussian 

after dichotomization using Hoeffding’s lemma  

 

cov(X, Y) = ׬ ׬ 𝐹௫,௬ሺ𝑋 ൐ 𝑥, 𝑌 ൐ 𝑦ሻ െ 𝐹௫ሺ𝑋 ൐ 𝑥ሻ 𝐹௬ሺ𝑌 ൐ 𝑦ሻ𝑑𝑥 𝑑𝑦
ஶ

ିஶ
ஶ

ିஶ  ,  (Eq. 12)  

 

where cov is the covariance, X and Y are random variables, 𝐹௫,௬ denotes the joint 

probability function, and  𝐹௫, 𝐹௬ represent the marginal probability functions28,61,62. To 

simulate finite-size effects (Fig. 1e, f), vectors of real random numbers were drawn from 

a bivariate Gaussian distribution with defined correlation Rin, converted into vectors of 

binary numbers by applying a threshold, and subjected to correlation analysis, resulting 

in the correlation coefficient Rout. The threshold was chosen to reach a previously 

specified average activity level , and the size of the vector varied in the range 5,000 to 

50,000. Furthermore, in a subset of simulations (Supplementary Figure 7), activity was 

simulated in ECs, computed into drive patterns in GCs by multiplication with the EC–GC 

connectivity matrix, and directly converted into binary activity values in GCs by applying 

a threshold corresponding to the desired activity level . This simplified approach 

permitted systematic variation of model parameters (e.g. cell numbers and connection 

probabilities) over a wide range.  
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Analysis of input and output patterns by a perception decoder 

To test whether the pattern separation process resulted in a gain of function that could be 

exploited by downstream networks, we analyzed input and output patterns by a 

perception decoder (Fig. 2f–h)11,37. The perception decoder was trained to categorize 

100 input and output patterns into 10 random classes. The decoder was comprised of a 

single layer, and a backpropagation learning algorithm was used to iteratively adjust the 

weights. Initially, all weights were arbitrarily set to 0.1. The learning rate was assumed as 

5 x 10-4. In each learning iteration, weights were adjusted according to the deviations 

between predicted and observed classifications. In total, 5,000 learning iterations were 

run, and the learning speed was quantified as the number of iterations at which the root 

mean square error reached a value of 0.1 or 0.05. 

Conventions 

Throughout the paper, model parameters given in Table 1 are referred to as standard 

parameters. In summary bar graphs, black bars indicate these standard values, light blue 

bars reduced values, and light red bars increased values in comparison to the default 

parameter set. Throughout the paper, the term “pattern” is defined as a vector of real 

numbers (for excitatory drive) or a vector of binary values (for activity, 1 if the cell fires, 0 

otherwise). In both cases, the vector length corresponds to the number of cells. 

Data and code availability  

Original data, analysis programs, and computer code for network simulations will be 

provided by the corresponding author (P.J.) upon request. Simulation code will be 

updated according to new experimental information about connectivity (e.g. EC–GC 

connectivity rules). Furthermore, IF models of GCs and single-compartment models of 

interneurons will be gradually replaced by more detailed models (conductance-based 

models and multi-compartmental models, respectively).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2019. . https://doi.org/10.1101/647800doi: bioRxiv preprint 

https://doi.org/10.1101/647800


22 

 

ACKNOWLEDGMENTS 

We thank Drs. Ad Aertsen, Arnd Roth, and Federico Stella for critically reading earlier 

versions of the manuscript. We are grateful to Florian Marr and Christina Altmutter for 

excellent technical assistance, Eleftheria Kralli-Beller for manuscript editing, and the 

Scientific Service Units of IST Austria for efficient support. Finally, we thank Drs. Ted 

Carnevale, Laszlo Erdös, Michael Hines, Nancy Kopell, Duane Nykamp, and Dominik 

Schröder for useful discussions, and Rainer Friedrich and Simon Wiechert for sharing 

unpublished data. Parts of the results presented were obtained using the Mach2 

Interuniversity Shared Memory Supercomputer (Linz, Austria). This project received 

funding from the European Research Council (ERC) under the European Union’s Horizon 

2020 research and innovation programme (grant agreement No 692692) and the Fond 

zur Förderung der Wissenschaftlichen Forschung (Z 312-B27, Wittgenstein award), both 

to P.J.  

 

Competing interest 

The authors declare no conflict of interest.  

 

Author contributions 

S.J.G. and P.J. designed the model and the layout of the simulations, A.S. performed 

large-scale simulations on computer clusters, C.E., X.Z., and B.A.S. provided 

experimental data, S.J.G. and P.J. analyzed data, and P.J. wrote the paper. All authors 

jointly revised the paper.  

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2019. . https://doi.org/10.1101/647800doi: bioRxiv preprint 

https://doi.org/10.1101/647800


23 

 

REFERENCES 

1. Yassa, M.A. & Stark, C.E. Pattern separation in the hippocampus. Trends Neurosci. 

34, 515–525 (2011). 

2. Rolls, E.T. Pattern separation, completion, and categorisation in the hippocampus and 

neocortex. Neurobiol. Learn. Mem. 129, 4–28 (2016). 

3. Chavlis, S. & Poirazi, P. Pattern separation in the hippocampus through the eyes of 

computational modeling. Synapse 71, doi: 10.1002/syn.21972 (2017). 

4. Leutgeb, J.K., Leutgeb, S., Moser, M.B. & Moser, E.I. Pattern separation in the dentate 

gyrus and CA3 of the hippocampus. Science 315, 961–966 (2007). 

5. Bischofberger, J., Engel, D., Frotscher, M. & Jonas, P. Timing and efficacy of 

transmitter release at mossy fiber synapses in the hippocampal network. Pflügers 

Arch. 453, 361–372 (2006).  

6. Mishra, R.K., Kim, S., Guzman, S.J. & Jonas, P. Symmetric spike timing-dependent 

plasticity at CA3-CA3 synapses optimizes storage and recall in autoassociative 

networks. Nat. Commun. 7, 11552 (2016). 

7. Guzman, S.J., Schlögl, A., Frotscher, M. & Jonas, P. Synaptic mechanisms of pattern 

completion in the hippocampal CA3 network. Science 353, 1117–1123 (2016). 

8. Chabrol, F.P., Arenz, A., Wiechert, M.T., Margrie, T.W. & DiGregorio, D.A. Synaptic 

diversity enables temporal coding of coincident multisensory inputs in single neurons. 

Nat. Neurosci. 18, 718–727 (2015). 

9. Marr, D. A theory of cerebellar cortex. J. Physiol. 202, 437–470 (1969). 

10. Albus, J.S. A Theory of Cerebellar Function. Math. Biosci. 10, 25–61 (1971). 

11. Cayco-Gajic, N.A., Clopath, C. & Silver, R.A. Sparse synaptic connectivity is required 

for decorrelation and pattern separation in feedforward networks. Nat. Commun. 8, 

1116 (2017). 

12. Elias, S.A. & Grossberg, S. Pattern formation, contrast control, and oscillations in the 

short term memory of shunting on-center off-surround networks. Biol. Cyber. 20, 69–

98 (1975).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2019. . https://doi.org/10.1101/647800doi: bioRxiv preprint 

https://doi.org/10.1101/647800


24 

 

13. Amari, S. & Arbib, M.A. Competition and cooperation in neural nets. Systems 

Neuroscience 1, 119–165 (1977).  

14. Coultrip, R., Granger, R. & Lynch, G. A cortical model of winner-take-all competition 

via lateral inhibition. Neural Networks 5, 47–54 (1992).  

15. Majani, E., Erlanson, R., & Abu-Mostafa, Y. On the k-winners takes-all network. 

Advances in Neural Information Process System 1, 634–642 (1988). 

16. Maass, W. On the computational power of winner-take-all. Neural Comput. 12, 2519–

2535 (2000). 

17. de Almeida, L., Idiart, M. & Lisman, J.E. A second function of gamma frequency 

oscillations: an E%-max winner-take-all mechanism selects which cells fire. J. 

Neurosci. 29, 7497–7503 (2009). 

18. Wiechert, M.T., Judkewitz, B., Riecke, H. & Friedrich, R.W. Mechanisms of pattern 

decorrelation by recurrent neuronal circuits. Nat. Neurosci. 13, 1003–1010 (2010).  

19. Lin, A.C., Bygrave, A.M., de Calignon, A., Lee. T. & Miesenböck, G. Sparse, 

decorrelated odor coding in the mushroom body enhances learned odor 

discrimination. Nat. Neurosci. 17, 559–568 (2014). 

20. Gschwend, O., Abraham, N.M., Lagier, S., Begnaud, F., Rodriguez, I. & Carleton, A. 

Neuronal pattern separation in the olfactory bulb improves odor discrimination 

learning. Nat. Neurosci. 18, 1474–1482 (2015).  

21. Tetzlaff, T., Helias. M., Einevoll, G.T. & Diesmann, M. Decorrelation of neural-network 

activity by inhibitory feedback. PLoS Comput. Biol. 8, e1002596 (2012). 

22. Burton, S.D. Inhibitory circuits of the mammalian main olfactory bulb. J. Neurophysiol. 

118, 2034–2051 (2017). 

23. Patton, P.E. & McNaughton, B. Connection matrix of the hippocampal formation: I. 

The dentate gyrus. Hippocampus 5, 245–286 (1995). 

24. Faghihi, F. & Moustafa, A.A. A computational model of pattern separation efficiency 

in the dentate gyrus with implications in schizophrenia. Front. Syst. Neurosci. 9, 42 

(2015). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2019. . https://doi.org/10.1101/647800doi: bioRxiv preprint 

https://doi.org/10.1101/647800


25 

25. Espinoza, C., Guzman S.J., Zhang X. & Jonas, P. Parvalbumin+ interneurons obey

unique connectivity rules and establish a powerful lateral-inhibition microcircuit in

dentate gyrus. Nat. Commun. 9, 4605 (2018).

26. Hu, H., Gan, J. & Jonas, P. Interneurons. Fast-spiking, parvalbumin⁺ GABAergic

interneurons: from cellular design to microcircuit function. Science 345, 1255263

(2014).

27. Espinoza, C., Guzman S.J., Csicsvari, J. & Jonas, P. Parvalbumin-expressing

interneurons permit pattern separation in the dentate gyrus by lateral inhibition and

structured connectivity. Society for Neuroscience Abstracts 166.09 (2018).

28. Hoeffding, W. Masstabinvariante Korrelationsstheorie. Schr. Math. Inst. Univ. Berlin

5, 179–233 (1940).

29. Amrein, I., Slomianka, L. & Lipp, H.P. Granule cell number, cell death and cell

proliferation in the dentate gyrus of wild-living rodents. Eur. J. Neurosci. 20, 3342–

3350 (2004).

30. Tamamaki, N. & Nojyo, Y. Projection of the entorhinal layer II neurons in the rat as

revealed by intracellular pressure-injection of neurobiotin. Hippocampus 3, 471–480

(1993).

31. Desmond N.L. & Levy W.B. Granule cell dendritic spine density in the rat hippocampus

varies with spine shape and location. Neurosci. Lett. 54, 219–224 (1985).

32. Schmidt-Hieber, C., Jonas, P. & Bischofberger, J. Subthreshold dendritic signal

processing and coincidence detection in dentate gyrus granule cells. J. Neurosci. 27,

8430–8441 (2007).

33. de Almeida, L., Idiart, M. & Lisman, J.E. The input-output transformation of the

hippocampal granule cells: from grid cells to place fields. J. Neurosci. 29, 7504–7512

(2009).

34. Bragin, A., Jandó, G., Nádasdy, Z., Hetke, J., Wise, K. & Buzsáki, G. Gamma (40–

100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15, 47–60

(1995).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2019. . https://doi.org/10.1101/647800doi: bioRxiv preprint 

https://doi.org/10.1101/647800


26 

35. Pernía-Andrade, A.J. & Jonas, P. Theta-gamma-modulated synaptic currents in

hippocampal granule cells in vivo define a mechanism for network oscillations. Neuron

81, 140–152 (2014).

36. Strüber, M., Sauer, J.F., Jonas, P. & Bartos, M. Distance-dependent inhibition

facilitates focality of gamma oscillations in the dentate gyrus. Nat. Commun. 8, 758

(2017).

37. Minsky, M. & Papert, S. Perceptrons: An Introduction to Computational Geometry. MIT

Press, Cambridge, MA, (1988).

38. Babadi, B. & Sompolinsky, H. Sparseness and expansion in sensory representations.

Neuron 83, 1213–1226 (2014).

39. Steward, O. Topographic organization of the projections from the entorhinal area to

the hippocampal formation of the rat. J. Comp. Neurol. 167, 285-314 (1976).

40. Witter, M.P. The perforant path: projections from the entorhinal cortex to the dentate

gyrus. Prog. Brain Res. 163, 43–61 (2007).

41. Geiger, J.R.P., Lübke, J., Roth, A., Frotscher, M. & Jonas, P. Submillisecond AMPA

receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18,

1009–1023 (1997).

42. Nörenberg, A., Hu, H., Vida, I., Bartos, M. & Jonas P. Distinct nonuniform cable

properties optimize rapid and efficient activation of fast-spiking GABAergic

interneurons. Proc. Natl. Acad. Sci. USA 107, 894–899 (2010).

43. Kraushaar, U. & Jonas, P. Efficacy and stability of quantal GABA release at a

hippocampal interneuron-principal neuron synapse. J. Neurosci. 20, 5594–5607

(2000).

44. Engin, E., Zarnowska, E.D., Benke, D., Tsvetkov, E., Sigal, M., Keist, R., Bolshakov,

V.Y., Pearce, R.A. & Rudolph, U. Tonic inhibitory control of dentate gyrus granule cells

by α5-containing GABAA receptors reduces memory interference. J. Neurosci. 35,

13698–13712 (2015).

45. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of

hippocampal circuit operations. Science 321, 53–57 (2008).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2019. . https://doi.org/10.1101/647800doi: bioRxiv preprint 

https://doi.org/10.1101/647800


27 

46. Hu, H. & Jonas, P. A supercritical density of Na+ channels ensures fast signaling in

GABAergic interneuron axons. Nat. Neurosci. 17, 686–693 (2014).

47. Henze, D.A., Wittner, L. & Buzsáki, G. Single granule cells reliably discharge targets

in the hippocampal CA3 network in vivo. Nat. Neurosci. 5, 790–795 (2002).

48. Vyleta, N.P., Borges-Merjane, C. & Jonas, P. Plasticity-dependent, full detonation at

hippocampal mossy fiber-CA3 pyramidal neuron synapses. Elife 5, e17977 (2016).

49. Das, T., Ivleva, E.I., Wagner, A.D., Stark, C.E. & Tamminga, C.A. Loss of pattern

separation performance in schizophrenia suggests dentate gyrus dysfunction.

Schizophr. Res. 159, 193–197 (2014).

50. Myers, C.E. & Scharfman, H.E. A role for hilar cells in pattern separation in the dentate

gyrus: a computational approach. Hippocampus 19, 321–337 (2009).

51. Schneider, C.J., Bezaire, M. & Soltesz, I. Toward a full-scale computational model of

the rat dentate gyrus. Front. Neural Circuits 6, 83 (2012).

52. Han, Z.S., Buhl, E.H., Lörinczi, Z. & Somogyi, P. A high degree of spatial selectivity in

the axonal and dendritic domains of physiologically identified local-circuit neurons in

the dentate gyrus of the rat hippocampus. Eur. J. Neurosci. 5, 395–410 (1993).

53. Hefft, S. & Jonas, P. Asynchronous GABA release generates long-lasting inhibition at

a hippocampal interneuron-principal neuron synapse. Nat. Neurosci. 8, 1319–1328

(2005).

54. Hosp, J.A., Strüber, M., Yanagawa, Y., Obata, K., Vida, I., Jonas, P. & Bartos M.

Morpho-physiological criteria divide dentate gyrus interneurons into classes.

Hippocampus 24, 189–203 (2014).

55. Wang, X.J. & Buzsáki, G. Gamma oscillation by synaptic inhibition in a hippocampal

interneuronal network model. J. Neurosci. 16, 6402–6413 (1996).

56. Ermentrout, B. Type I membranes, phase resetting curves, and synchrony. Neural

Comput. 8, 979–1001 (1996).

57. Carnevale, N.T. & Hines, M.L. The Neuron book (Cambridge University Press,

Cambridge, 2006).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2019. . https://doi.org/10.1101/647800doi: bioRxiv preprint 

https://doi.org/10.1101/647800


28 

58. Bartos, M., Vida, I., Frotscher, M., Geiger, J.R.P. & Jonas, P. Rapid signaling at

inhibitory synapses in a dentate gyrus interneuron network. J. Neurosci. 21, 2687–

2698 (2001).

59. Bartos, M., Vida, I., Frotscher, M., Meyer, A., Monyer, H., Geiger, J.R.P. & Jonas, P.

Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal

interneuron networks. Proc. Natl. Acad. Sci. USA 99, 13222–13227 (2002).

60. Paxinos, G. & Franklin, K. The mouse brain in stereotaxic coordinates. 4th Edition.

Academic Press, Cambridge, MA (2012).

61. Block, H.W. & Fang, Z. A multivariate extension of Hoeffding’s lemma. Ann. Probab.

16, 1803–1820 (1988).

62. Macke, J.H., Berens, P., Ecker, A.S., Tolias, A.S. & Bethge, M. Generating spike trains

with specified correlation coefficients. Neural Comput. 21, 397–423 (2009).

63. Doischer, D., Hosp, J.A., Yanagawa, Y., Obata, K., Jonas, P., Vida, I. & Bartos, M.

Postnatal differentiation of basket cells from slow to fast signaling devices. J.

Neurosci. 28, 12956–12968 (2008).

64. Schmidt-Hieber, C., Jonas, P. & Bischofberger, J. Action potential initiation and

propagation in hippocampal mossy fibre axons. J. Physiol. 586, 1849–1857 (2008).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2019. . https://doi.org/10.1101/647800doi: bioRxiv preprint 

https://doi.org/10.1101/647800


29 

FIGURE LEGENDS 

Fig. 1 Principles and quantitative analysis of pattern separation by a winner-takes-all 

mechanism.  

(a) Left, Venn diagrams of two patterns before and after pattern separation. Overlapping

input patterns (A, B; top) are converted into non-overlapping output patterns (A’, B’;

bottom). Right, real input pattern vectors and binary output pattern vectors; red, cells

active in pattern A; green, cells active in pattern B; yellow, cells active in both patterns. In

top scheme, intensity reflects the level of excitatory synaptic drive.

(b) Analysis of pattern separation in input-output correlation plots. Rin and Rout represent

pairwise correlations in input and output patterns. Red dashed line indicates pattern

identity. Area below identity line corresponds to a regime in which Rout < Rin, i.e. pattern

separation. Area above identity line corresponds to a regime where Rout > Rin, i.e. pattern

completion.

(c) Simple representation of the winner-takes-all pattern separation mechanism. Real

vectors corresponding to the excitatory synaptic drive (input pattern; Gaussian

distribution) are converted into binary vectors representing the AP activity of the neurons

(output pattern), applying a threshold to the data. The threshold is set to give a defined

average activity level .

(d) Rout versus Rin plots for various activity levels , varied in the range from 0.63 to 0.001.

The normalized area between the curves and the identity line (pattern separation index

 = 2 ׬ (x - fሺ𝑥ሻሻ 𝑑𝑥 
ଵ

௫ୀ଴ ) represents a robust measure of the efficacy of the pattern 

separation process. 

(e) Rout versus Rin plots for random vectors of finite neuronal populations with different

numbers of cells nCells. Top, nCells = 5,000; bottom, nCells = 50,000. Note that the correlation

between Rout and Rin values drops for decreasing activity levels for nCells = 5,000, but

remains stable for nCells = 50,000. This highlights the importance of full-scale simulations

for understanding the mechanisms of pattern separation.
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(f) Three metrics to characterize pattern separation. Top, efficiency  of pattern

separation, quantified from the area under the Rout–Rin curve. Center, reliability of pattern

separation , quantified by the Pearson’s correlation coefficient of the ranks of all Rout

versus the ranks of all Rin values. Bottom, gain  of pattern separation, determined from

the slope of the Rout–Rin curve for Rin  1. Left, schematic illustration of definition of the

parameters. Right, plot of , , and  against average activity . Red curve, analytical

solution for the infinite-size network; black points, 20 simulations per activity level, each

for a population of 5,000 neurons. For the –plot, only positive  values are depicted.

Fig. 2 A biologically realistic PN–IN network including a winner-takes-all mechanism by 

lateral inhibition generates efficient pattern separation.  

(a) Top, illustration of experimentally determined connectivity rules between GCs and PV+

interneurons in dentate gyrus. Reconstruction was obtained from Espinoza et al., 2018

(Ref. 25). Bottom, schematic illustration of network mechanisms of pattern separation by

a winner-takes-all mechanism. For simplicity, only GCs (circles) and INs (triangles) are

depicted. Blue indicates cell activity, with color intensity reflecting the level of excitatory

synaptic drive. Left, activity pattern A, right, activity pattern B. Top, network in the absence

of inhibition, bottom, network in the presence of inhibition.

(b) Top, membrane potential in INs (left, red) and PNs (right, black). Traces from every

10th interneuron (250 traces total) and every 1,000th GC (500 traces total) are

superimposed. For GCs, membrane potential is unitless, since GCs were simulated as IF

neurons. Bottom, rasterplots of AP generation in INs (left, red) and GCs (right, black).

Each point indicates an AP. t = 0 corresponds to onset of inhibitory conductance

representing a gamma oscillation cycle in the network17.

(c–e) Input–output function in a network with standard parameter settings. Data points 

represent pairwise correlation coefficients between input patterns (excitatory synaptic 

drive, Rin) and corresponding output patterns (action potential activity, Rout). Dashed red 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2019. . https://doi.org/10.1101/647800doi: bioRxiv preprint 

https://doi.org/10.1101/647800


31 

line indicates identity. With standard parameter settings,  (determined from the area 

between data points and identity line) was 0.560, demonstrating efficient pattern 

separation (c). Furthermore, the reliability of pattern separation , computed as the 

correlation of ranked Rout versus ranked Rin data, was close to 1 (d). Finally, the gain  of 

pattern separation, determined from the maximal slope of a polynomial function fit to the 

data for x → 1, was 11.1 (e), demonstrating that the network amplifies small differences 

in the synaptic input patterns into large differences in the AP output patterns. Blue curve 

indicates fit function, blue line represents corresponding tangent. For details, see 

Methods.  

(f) Schematic illustration of the perceptron decoding method, used to address the

relevance of pattern separation for downstream networks11. A cellular population of size

ncells is connected to 10 perceptrons. One-hundred patterns (npatterns = 100) are randomly

grouped into ten classes (nclasses = 10). Thus, there is one perceptron for each class. The

weights of the connections are iteratively adjusted, so that the activity of the 10

perceptrons matches the classification of the patterns. Weights 𝑤are adjusted according

to the difference between true and predicted classes (𝑤 = lr  x Apatterns x  y, where lr is

learning rate, Apatterns is the pattern matrix of size ncells x npatterns, and y is the sum of

squared differences between classification and prediction).

(g) Plot of RMS (root mean square) error against the number of iterations in the

perceptron decoder. The perceptron was trained either with the EC input pattern (blue;

before pattern separation) or the GC activity pattern (red; after pattern separation in the

dentate gyrus). RMS was calculated as the mean of squared differences between true

and predicted classes.

(h) Summary bar graph of error decay time (tdecay, when RMS error reached 0.1 or 0.05)

in the perceptron decoder. Blue, EC input pattern (before pattern separation); red, GC

activity pattern (after pattern separation in the dentate gyrus). Note that the perceptron

decoder learns more rapidly from the GC output patterns than the EC input patterns.
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Fig. 3 A winner-takes-all mechanism by lateral inhibition plays a critical role in pattern 

separation.  

(a) Input–output correlation plots for variations in network parameters in comparison to

default values. Top, Iµ was set to 1, while external inhibitory gamma drive Jgamma was set

to 0.5 (left) or 3.5 (right). Bottom, similar to top, but Iµ was set to 2. Note that efficient

pattern separation was observed in all scenarios except the condition with low excitatory

drive and high Jgamma (where activity was 0).

(b) Contour plot of  against the mean excitatory drive (Iµ, abscissa) and amplitude of

external inhibitory gamma drive (Jgamma, ordinate). Contour lines indicate ; warm colors

represent high values, whereas cold colors indicate low values. In the gray part of the

plotting range, reliability was  < 0.1, or activity  was > 0.8 (i.e. majority of cells were

firing). Note efficient pattern separation in a large subregion of the Iµ–Jgamma parameter

space.

(c) Divergent connectivity between ECs and GCs is important for efficient pattern

separation. Effects of changes in number of ECs (nEC, top left), average activity of ECs

(EC, top right), maximal connection probability of EC–GC connectivity (cEC–GC, bottom

left), and width of EC–GC connectivity (EC–GC, bottom right). Note that low EC number

(nEC), sparse EC activity (EC), and sparse EC–GC connectivity facilitate efficient pattern

separation.

(d) Lateral inhibition is necessary for efficient pattern separation. Left, contour plot of 

against the mean excitatory drive (Iµ, abscissa) and amplitude of external inhibitory

gamma drive (Jgamma, ordinate) after complete elimination of lateral inhibition (cE–I = 0 and

cI–E = 0). Note efficient pattern separation in only a minimal subregion of the Iµ–Jgamma

parameter space. Right, effects of changes in synaptic strength of excitatory E–I

synapses (JE–I) and inhibitory I–E synapses (JE–I). Black bars indicate  for standard

parameter settings; light blue bars represent reduced values; light red bars indicate
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increased values in comparison to standard values. Note that reduction in either JE–I or 

JE–I reduces the  value.  

Fig. 4 Fast interneuron signaling and focal PN–IN interconnectivity synergistically 

enhance pattern separation performance.  

(a) Effects of impairment of fast interneuron signaling on input-output correlation plots.

Top left, introduction of an additional delay at GC–PV+ interneuron synapses (syn,E = 2

ms); top right, prolongation of rise and decay time constant of synaptic conductance

change at GC–PV+ interneuron synapses (rise time constant rise,E = 1 ms; decay time

constant decay,E = 10 ms); bottom left, prolongation of the membrane time constant in PV+

interneurons (m = 40 ms); bottom, right, introduction of an additional delay at PV+

interneuron–GC synapses (syn,I = 2 ms).

(b) Summary bar graph of pattern separation efficiency  for impairment of fast

interneuron signaling for changes in syn,E (top, left), decay,E (top, right), m (bottom, left),

and syn,I (bottom, right). Interfering with fast signaling at multiple levels of the lateral

inhibition pathway convergently impairs pattern separation efficacy.

(c) Effects of focal connectivity on pattern separation. Summary bar graph of  for

different values of excitatory E–I (top) or inhibitory I–E (bottom) connectivity in the

network. Right bar in each bar graph (“rand”) represents uniform random connectivity.

Peak connectivity (and, if required, synaptic strength) was compensated to maintain the

total synaptic efficacy.

(d) Contour plot of  against width of excitatory E–I connectivity (E–I) and inhibitory

connectivity (I–E). Peak connectivity was compensated, as in (c). Note that networks with

focal connectivity show more efficient pattern separation than networks with broad

connectivity. Furthermore, asymmetry in spatial connectivity rules supports pattern

separation. This is consistent with experimental observation of focal excitatory E–I
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connectivity versus the broader inhibitory I–E connectivity25. Inset on top, distribution of 

synaptic latency values in the network with standard parameters for excitatory E–I and 

inhibitory I–E synapses (probability density functions). 

(e) Effects of focal connectivity are mediated via effects on signaling speed. Left,

summary bar graph of  for different AP propagation velocity values for excitatory GC–

PV+ interneuron synapses (vAP,E–I, top) and inhibitory PV+ interneuron–GC synapses

(vAPI–E, bottom). Right, summary bar graph of  for different values of excitatory E–I (top)

or inhibitory I–E (bottom) connectivity after compensatory adjustment of both connectivity

and delay to maintain both total connectivity and average delay at their default values.

Note that broadening of connectivity fails to reduce pattern separation performance in the

presence of delay adjustment. Thus, the beneficial effects of focal connectivity are largely

generated by faster signaling.

Supplementary Figures 

Supplementary Figure 1 Schematic illustration of full-size network simulations.  

(a) Computation of activity in ECs. 𝑎⃗EC,i represents the ith binary activity vector in the ECs

(50,000 neurons).

(b) Computation of drive patterns in GCs. 𝑑GC,i represents the ith drive vector in GCs

(500,000 neurons). 𝑑 GC,i was computed as the product of activity vector 𝑎⃗ EC,i and

connectivity matrix AEC–GC.

(c) Computation of activity in dentate gyrus. Activity in the full-size network was simulated

using NEURON version 7.6.257. 𝑎⃗GC,i represents the ith binary activity vector in the GCs,

determined by the spiking of GCs.

(d) Computation of pattern correlation and input-output correlation curves. Correlations

Rin were computed between pairs of drive vectors, correlations Rout were computed
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between pairs of activity vectors. Finally, Rout and Rin values were plotted against each 

other, and a continuous function f(x) was obtained by linear interpolation.  

Supplementary Figure 2 A network model activated by Poisson trains in perforant path 

input is able to perform efficient pattern separation.  

(a) Left, schematic illustration of network containing perforant path input. Right, 

simulated membrane potentials (top) and rasterplot of interneuron and principal neuron 

firing (bottom) in a model with realistic EC–GC synaptic input, represented by Poisson 

trains of APs at different frequency. Every point in the rasterplots represents an AP. 

Average activity frequency of the perforant path (pp) synapses fpp = 18.8 Hz; activation 

frequency was chosen to give Iµ ≈ 1.6.

(b) Input-output correlation curves for standard model with tonic excitatory drive (left; Iµ 

= 1.6) and model in which excitatory drive was generated by Poisson trains of EPSCs 

in GCs (right; fpp = 18.8 Hz; activation frequency was chosen to give Iµ ≈ 1.6, facilitating 

the comparison with the standard model). Note that the randomness of the input 

trains resulted in a drop of the output correlation for input correlation values of 1, 

because an additional random process is added to the system.

(c) Dependence of ψ on activity frequency of perforant path synapses. Synaptic weight 

of EC–GC synapses was set to JEC–GC = 0.002 in all simulations. Activation frequency 

was chosen to approximately match Iµ = 1, 1.2, 1.4, 1.6, and 2.0 in the standard model 

(see Fig. 3b and d). 

Supplementary Figure 3 A network model incorporating feedforward inhibition is able to 

perform efficient pattern separation. 
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(a) Schematic illustration of the network model incorporating feedforward inhibition, in 

addition to feedback inhibition. ECs innervate GCs and INs with similar connectivity rules. 

The tonic excitatory drive in an individual IN is computed from the drive from the nearest 

GC as:   

IµI [i]= IµE [i/nI  x  nE] / <IµE>  x  Iµ,I ,    i = 1 … nI,  

where IµI [i] is the excitatory drive in the ith interneuron (unitless), IµE [i] is the excitatory 

drive in the ith GC, nI is the number of INs, nE is the number of GCs, <IµE> is the average 

excitatory drive over all GCs, and Iµ,I is the chosen excitatory drive in the INs (in pA).  

(b) Input-output correlation curves in a control network (left) and a network incorporating 

feedforward drive to INs (right).  

(c) Dependence of  on feedforward drive in INs. Black bar, default value (no feedforward 

drive); light red bars, larger values (increased feedforward drive). Note that efficacy 

pattern separation  is slightly increased by incorporation of feedforward excitation of INs.  

 

 

Supplementary Figure 4 A network model incorporating type 1 and type 2 synaptic 

amplitude variability is able to perform efficient pattern separation. 

(a)  for different degrees of type 1 (trial-to-trial) variability in the amplitude of all synapses 

(excitatory E–I, inhibitory I–E, and inhibitory I–I synapses). Coefficient of variation (CV = 

standard deviation / mean) was varied between 0.05 and 0.25. The synaptic weights 

fluctuated randomly from trial to trial. Top, summary bar graph of . Note that the type 1 

variability resulted in an apparent increase in pattern separation efficacy , because an 

additional random process is added to the system. Bottom, plot of pattern separation 

efficiency  (red), reliability  (green), gain  (blue), and average activity  (magenta) as 

a function CV. Note that reliability  declines above a CV value of ~0.1.  

(b)  for different degrees of type 2 (synapse-to-synapse) variability in the amplitude of 

all synapses (excitatory E–I, inhibitory I–E, and inhibitory I–I synapses). Coefficient of 
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variation (standard deviation / mean) was varied between 0.1 and 0.8. The synaptic 

weights differed between individual synapses, but were constant from trial to trial. Note 

that type 2 variability has only minimal effects on pattern separation.   

 

 

 

Supplementary Figure 5 Efficiency, reliability, and gain of pattern separation after 

changes in EC–GC connectivity and synaptic strength of excitatory and inhibitory 

synapses.  

(a) Plot of pattern separation efficiency  (red), reliability  (green), gain  (blue), and 

average activity  (magenta) for different nEC, EC, cEC–GC, and EC–GC values  (see Fig. 

3c).  

(b) Plot of pattern separation efficiency  (red), reliability  (green), gain  (blue), and 

average activity  (magenta) for different JE–I and JI–E values (see Fig. 3d).   

 

 

Supplementary Figure 6 Effects of structured EC–GC connectivity on pattern 

separation.  

(a)  for different values of peak connection probability (cEC–GC, top) and width of 

entorhinal connectivity (EC–GC, bottom) for a network in which the excitatory drive in GCs 

was randomly shuffled. Note that the results are only minimally different from those in the 

standard network (compare with Fig. 3c, bottom).  

(b) Effects of structural connectivity rules of EC–GC connections. EC–GC connectivity 

was either completely random, completely structured so that EC–GC synapses were 

formed within a full connectivity disc, or showed mixed properties. Top, bar graph of 

pattern separation efficiency  for different proportions of nonrandom connections. Black 
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bar, fraction of nonrandom connections fNR = 0; i.e. all connections random; light red bars, 

enhanced structured connectivity (fNR = 0.2 to 1, 1 = all connections structured). Bottom, 

plot of pattern separation efficiency  (red), reliability  (green), gain  (blue), and average 

activity  (magenta) as a function of the fraction of nonrandom connections.  

 

 

Supplementary Figure 7 EC–GC connectivity rules have relatively minor effects on the 

efficacy of pattern separation.  

(a) Systematic analysis of effects of different expansion ratios on pattern separation. The 

ratio of cells in entorhinal and dentate gyrus layers, nEC : nGC, was varied over a wide 

range. Left, nEC : nGC = 50,000 : 50,000; center, nEC : nGC = 10,000 : 100,000; right, nEC : 

nGC = 100,000 : 10,000. Activity GC = 0.01, connection probability cEC–GC = 0.05. Note 

that high  values can be obtained at various expansion or compression ratios.  

(b) Systematic analysis of effects of EC–GC connection probability on the efficacy of 

pattern separation. Left, cEC–GC = 0.2; center, cEC–GC = 0.05; right, cEC–GC = 0.001. Activity 

GC = 0.01, nEC: nGC = 50,000 : 500,000. Note that high  values can be obtained for 

various values of EC–GC connection probability.  

(c) Systematic analysis of the GC activity level on the efficacy of pattern separation. 

Activity level  was set to 0.1, 0.01, and 0.001 (nEC : nGC = 50,000 : 500,000; cEC–GC = 

0.05).  Activity in ECs was 0.1 in all simulations. Note that  increased with decreasing 

GC, i.e. increasing sparseness of activity in the dentate gyrus. The synaptic drive in GCs 

was computed as the product of entorhinal activity vector and EC–GC connectivity matrix, 

and thresholding was performed to obtain the desired average activity level in the GC 

layer. 
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Supplementary Figure 8 Interfering with lateral inhibition in different ways similarly 

affects pattern separation.  

(a, b)  for different values of peak connection probability (cE–I, a) and width of excitatory 

E–I connectivity (E–I, b).  

(c, d)  for different values of peak connection probability (cI–E, c) and width of inhibitory 

I–E connectivity (I–E, d). Note that the effects of changing excitatory and inhibitory 

connectivity on pattern separation efficacy are similar to those of changing the strength 

of excitatory E–I and inhibitory I–E synapses (Fig. 3d, right).  

 

 

Supplementary Figure 9 Efficiency, reliability, and gain of pattern separation after 

changes in fast signaling and focal connectivity of PV+ interneurons.  

(a) Plot of pattern separation efficiency  (red), reliability  (green), gain  (blue), and 

average activity  (magenta) for different syn,E, decay,E, m, and syn,E values  (see Fig. 

4b).  

(b) Plot of pattern separation efficiency  (red), reliability  (green), gain  (blue), and 

average activity  (magenta) for different E–I, I–E, vAP, E–I, and vAP, I–E values (see Fig. 4c 

and e).   
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Table 1 Standard parameters for the full-scale network model of pattern separation.  

Parameter Meaning Standard value 

(range) 

References 

nEC number of entorhinal cells (ECs) 

50,000 

(12,500 – 

200,000) 

 

nE number of granule cells (GCs) 500,000 

Amrein et al., 

2004  

(Ref. 29) 

nI number of PV+ interneurons (PV+ INs) 2,500  

cE–I maximal connection probability E–I synapses 0.1 (a) 

Espinoza et 

al., 2018 

(Ref. 25) 

E–I connection width E–I synapses 
150 µm (37.5–

300 µm) (b) 

Espinoza et 

al., 2018 

(Ref. 25) 

JE–I synaptic strength E–I synapses 
8 nS (2–32 nS) 

(c) 
 

rise,E EPSC rise time constant 0.1 ms 

Geiger et al., 

1997  

(Ref. 41) 

decay,E EPSC decay time constant 1 ms 

Geiger et al., 

1997  

(Ref. 41) 

cI–E maximal connection probability I–E synapses 0.3 (a) 

Espinoza et 

al., 2018 

(Ref. 25) 

I–E connection width I–E synapses 
300 µm (75–

600 µm) (b) 

Espinoza et 

al., 2018 

(Ref. 25) 
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JI–E synaptic strength I–E synapses 
0.025 

(0.005–0.1) (d) 
 

I–E IPSC decay time constant 10 ms  

cI–I maximal connection probability I–I synapses 0.6  

I–I connection width I–I synapses 300 µm (b)  

JI–I synaptic strength I–I synapses 16 nS  

I–I IPSC decay time constant 2.5 ms 

Bartos et al., 

2001, 2002 

(Refs. 58,59) 

vAP,E–I,  

vAP,I–E   
axonal AP propagation velocity  

0.2 m s-1 (0.05–

0.66 m s-1) (e) 

Hu and 

Jonas, 2014; 

Doischer et 

al., 2008; 

Schmidt-

Hieber et al., 

2008 (Refs. 

46,63,64) 

syn,E, syn,I extra synaptic delay  0–2 ms 

Geiger et al., 

1997; 

Kraushaar 

and Jonas, 

2000  

(Refs. 41,43) 

Jgamma 
external inhibitory gamma-frequency drive to 

GCs  

1.0 (0.5 – 3.5) 

(d) 

de Almeida et 

al., 2009 

(Ref. 17) 

cgap maximal connection probability gap junctions  0.8  

gap  connection width gap junctions 150 µm (b)  

Rgap gap junction resistance  300 M   
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cEC-GC  
maximal connection probability EC–GC 

synapses 

0.2  

(0.05–1) 

Tamamaki 

and Nojyo, 

1993; 

Steward, 

1992; Witter, 

2007 (Refs. 

30,39,40)  

EC-GC connection width EC–GC synapses 
500 µm  

(0.1–infinity) 

Tamamaki 

and Nojyo, 

1993; 

Steward, 

1992; Witter, 

2007 (Ref.  

30,39,40) 

EC average activity in EC neurons  
0.1 

(0.02–0.5) 
 

Iµ amplitude of excitatory drive in E neurons  1.8 (1.0–2.0) (d)  

  

(a) For the standard parameter set, the ratio of inhibitory to excitatory synapses was 

6, consistent with the experimental data (Espinoza et al., 2018; Ref. 25).  

(b) Space constants refer to a total length of the hippocampal formation of 5 mm.  

(c) Firing threshold of PV+ INs was ~18 nS.  

(d) Unitless, because GCs were modeled as IF neurons. 

(e) For the standard values of vAP,E–I, vAP,I–EE–I, and I–E, the weighted mean latency 

is 0.60 ms for E-I synapses and 1.20 ms for I-E synapses, consistent with 

experimental observations (Espinoza et al., 2018; Ref. 25). 

Values in parentheses indicate explored parameter range. EPSC, excitatory postsynaptic 

current; IPSC, inhibitory postsynaptic current; AP, action potential.  
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