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Abstract

A method for the identification of direct synaptic connections in a larger neural net is presented. It is based on a conditional
correlation graph for multivariate point processes. The connections are identified via the partial spectral coherence of two
neurons, given all others. It is shown how these coherences can be calculated by inversion of the spectral density matrix. In
simulations with GENESIS, we discuss the relevance of the method for identifying different neural ensembles including an
excitatory feedback loop and networks with lateral inhibitions. © 1997 Elsevier Science B.V.
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1. Introduction

The cellular and molecular mechanisms of signal
transduction in the nervous system have been studied
intensively and, as a consequence, a better knowledge
and understanding of some basic processes of informa-
tion handling by neurons has been achieved (Trimble et
al., 1991; Bliss and Collingridge, 1993; Wickmann and
Clapham, 1995; Schuldiner et al., 1995). In contrast,
little is known about the organization and function of
complex neuronal networks. Experimental methods are
now available to simultaneously monitor electrical ac-
tivity of a large number of neurons in real time. This
may be achieved by multiple single neuron recordings
(Krüger, 1983) or by use of voltage sensitive dyes
(Grinvald et al., 1988; Parsons et al., 1991). The use of
four closely spaced electrodes (‘tetrode’) allows identifi-
cation of discharges of ten to 15 individual neurons.
This is a considerably higher yield than that obtained
by two electrodes (‘stereotrode’) or the conventional

single microelectrode recordings (Gray et al., 1995).
Commonly used cross-correlation analysis may detect
temporally correlated discharges (Hata et al., 1991;
Alloway et al., 1993), which may be relevant for assem-
bly coding of information (Lindsay et al., 1992; Singer,
1993). The interpretation of data is, however, hampered
by the fact that cross-correlograms may not reveal the
nature of the correlations, i.e. it is not possible to
differentiate between direct and indirect connections
and a common input to the neurons under study.

The aim of this paper is to present a method for such
an identification of synaptic connections in a larger
neural net based on frequency domain methods.

Brillinger et al. (1976) have used the partial spectral
coherence for point processes as a tool for identifying
synaptic interactions between three cells. They used this
method to discriminate between direct and indirect
connections between the neurons. In Rosenberg et al.
(1989), the method has been used to distinguish
whether two neurons interact directly or are influenced
by common input of one or more cells. Earlier, Gersch
(1972) had used the partial spectral coherence for time
series to study causality for three-dimensional time
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series. In Gersch and Goddard (1970), the method has
been applied to locate the site of an epileptic seizure in
the cat brain. Kamiński and Blinowska (1991) used
frequency domain methods based on a parametric time
series model to distinguish between direct and indirect
transfer of information in a multichannel EEG process.

In the present paper, we extend the method of iden-
tification by the partial spectral coherence to a larger
net of neurons and combine it with recent results on
graphical models for multivariate data (Whittaker,
1990; Lauritzen, 1996; Cox and Wermuth, 1996). The
theoretical framework of our method is the theory of
stationary point processes. In Section 2, we present the
method and discuss its properties. In Section 3, we
study the performance of the proposed method by
applying it to various neural nets generated with the
GENESIS-simulation program (Bower and Beeman,
1995).

Alternatively, one could try to use time domain
methods for this identification. Gerstein and Aertsen
(1985) have introduced the gravity method where the
neurons are represented by particles with ‘charges’ re-
lated to the spike trains of the neurons. The resulting
forces on the particles cause aggregation of those neu-
rons which exhibit correlated firing.

2. The identification method

The method proposed in this paper for the identifica-
tion of synaptic connections is based on a stochastic
graphical interaction model for multivariate point pro-
cesses. This model is new as well and could be applied
also to other type of data.

As explained in more detail in Section 2.4 the vertices
in the graph represent the components of the point
process (the different neurons) while an edge between
two vertices reflects a ‘direct’ connection between the
two corresponding neurons. Thus, we can distinguish
between direct connections and indirect connections via
other neurons. More precisely, an edge reflects a partial
correlation between the two components and some
modification is necessary to conclude to a physically
existing connection. This modification procedure is ex-
plained in Section 2.5.

The conditional correlation graph is estimated by
using the partial spectral coherence of two components
of the point process given all other components. The
phase of the partial spectrum gives some additional
information on the time delay of the signals and there-
fore also on the direction of the connections. This
methodology is presented in Sections 2.1, 2.2 and 2.3
while the graphical model itself is introduced in Section
2.4.

The fitted graph therefore is based on a stochastic
model and estimated from the measurements at hand.

Two problems have to be investigated: first, the ques-
tion whether the proposed estimation method is reason-
able within the stochastic model, i.e. whether the graph
of a multivariate point process which reflects certain
probabilistic properties of the process can be identified
from a realization of the point process with the pro-
posed method; and second, whether the stochastic
graphical model is a reasonable model for the identifi-
cation of physically existing synaptic connections in
neural ensembles. Both questions are investigated via
simulation studies in Section 3.

2.1. Multi6ariate point processes

The method discussed in this paper is based entirely
on the relation between the sequences of the times of
occurrence of action potentials in the recorded spike
trains of different neurons. Therefore, the spike trains
of a group of neurons can be represented as a multi-
variate stochastic point process. A point process in
general refers to an ordered sequence of isolated events
{sj}jez occurring randomly in time. Such a point pro-
cess associated with the spike train of neuron A can be
described by the counting process NA(t), where NA(t) is
the total number of action potentials up to time t of
neuron A.

Subsequently, it will be assumed that the correlation
structure of the multivariate point process does not
change with time (the process is second-order station-
ary) and that events widely separated in time occur
essentially independently (the process is mixing). As
nerve cell action potentials cannot occur simulta-
neously, the associated point process is also orderly, i.e.
there are no multiple events.

Parameters of interest in the analysis of spike trains
are the mean-intensity of process NA, defined by

pA= lim
h¡0

Prob{A spike in (t, t+h ]}/h

and the cross-product density at lag u between pro-
cesses NA and NB, defined by

pAB(u)

= lim
h,h%¡0

Prob{A spike in (t+u, t+u+h ]

and B spike in (t, t+h %]}/hh %.

In the case A=B, the product density pAA(u) is defined
in such a way that it is continuous at u=0. Alterna-
tively, one might consider the cross-intensity function,

mAB(u)

= lim
h¡0

Prob{A spike in (t+u, t+u+h ]�B spike at t}

/h,

which is related to the cross-product density by
mAB(u)=pAB(u)/pB, or the cross-covariance density,
qAB(u)=pAB(u)−pApB.
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Fig. 1. A simple graph.

algorithm based on a discrete approximation of the
point process NA (Rigas, 1993). The spectral density
matrix f(l)= ( fAB(l))A,B=1,…,K then is typically esti-
mated componentwise by

f. AB(l)

=
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where H2=	0
1 h(t)2 dt and wT(l)=w(l/T)/T for some

kernel function w( · ) with bounded support (Brillinger,
1981). A more detailed discussion of frequency methods
may be found in Brillinger et al. (1976); Rosenberg et
al. (1989).

The cross-spectrum fAB(l) measures the strength of
association between two neurons A and B : if the cross-
spectrum vanishes for all frequencies, the two spike
trains NA and NB are linearly independent. A reason-
ably rescaled version of the cross-spectrum is the spec-
tral coherence �RAB(l)�2 where

RAB(l)=
fAB(l)

( fAA(l)fBB(l))1/2.

Unlike the cross spectrum, the spectral coherence is
bounded and takes values between zero and one. It
satisfies

�RAB(l)�2= lim
T��

� corr {d(T)
A (l), d(T)

B (l)}�2.
Therefore, if �RAB(l)�2 differs from zero for some fre-
quency component, this implies a correlation of the two
spike trains NA and NB and thus some connection
between the nerve cells A and B. However, we are not
able to decide on the basis of the spectral coherence
whether the two neurons A and B are directly con-
nected or only indirectly connected over one or more
other neurons.

2.2. The partial spectral coherence

In order to decide whether two neurons A and B are
connected directly or are influenced by a common input
C, Brillinger et al. (1976) recommended to estimate the
partial spectral coherence �RAB � C(l)�2 where

RAB�C(l)=
fAB�C(l)

( fAA�C(l)fBB�C(l))1/2 (2)

with

fAB�C(l)= fAB(l)− fAC(l)fCC(l)−1fCB(l) (3)

(see Rosenberg et al., 1989; Brillinger, 1981). Here the
common input C might consist of several neurons.

In contrast to the ordinary coherence, the partial
spectral coherence measures the dependence between
the processes NA and NB after the linear effects of the
(multivariate) process NC have been removed (Rosen-

In the frequency domain, the corresponding second-
order parameters are the cross-spectrum between pro-
cesses NA and NB,

fAB(l)=
1

2p

&�
−�

(pAB(u)−pApB) exp(− ilu) du

and the auto-spectrum of process NA,

fAA(l)=
pA

2p
+

1
2p

&�
−�

(pAA(u)−p2
A) exp(− ilu) du

More generally, if A and B are sets consisting of one or
more neurons, we denote by fAB(l) the matrix with
elements fab(l) where a�A and b�B.

Suppose the spike trains of K different neurons have
been recorded over a time interval of length T. Then
the above time domain parameters can be estimated by
the empirical intensity

p̂ (T)
A =

NA(T)
T

and by the cross-correlation histogram

m̂ (T)
AB(u)=

1
bNB(T)

c{u−
b
2
Bsj−tkBu+

b
2

; tk "sj,

j, k=1, 2,…},

where ‘c ’ stands for ‘the number of’, b denotes a bin
width and {sj} and {tk} denote the observed times of A
spikes and B spikes, respectively.

The approach in the frequency domain is based on
the finite Fourier transforms of the individual spike
trains, which are given by

d (T)
A (l)= %

0Bsj5T

h(sj/T) exp(− ilsj),

where {sj} are the observed spike times for neuron A
and h( · ) is a data taper, by which the convergence
properties of the spectral estimates can be improved
(Brillinger, 1981). The Fourier transform dA

(T) can be
computed efficiently by using a fast Fourier transform

Fig. 2. Identifying the directed graph.
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Fig. 3. (a) Real graph for the Hawkes model data with aAB/bAB given for each connection (bAB=500, uAB=0.02). (b) Estimated conditional
correlation graph with some directions derived from the phase spectrum.

berg et al., 1989). For example, consider the case of
three neurons A, B, and C where A is connected with C
and C is connected with B. Then the spectral coherency
�RAB(l)�2 differs from 0 for some frequencies l, which
shows the dependence between A and B. If neural
activity were purely driven by linear dynamics, then the
partial spectral coherency �RAB�C(l)�2 would vanish for
all l indicating that the connection from A to B is not
direct but via neuron C. However, there is evidence that
neural activity cannot completely be described by linear
dynamics. Nevertheless, the partial spectral coherence
seems to work well for the discrimination between
direct and indirect connections (Brillinger et al., 1976;
Rosenberg et al., 1989).

In this paper, we use the partial spectral coherence
�RAB�CAB

(l)�2, where CAB denotes the set of all neurons
without neurons A and B, to build a graph which
reflects the correlation structure of a multivariate point
process and, after some modification also the connec-
tions in a neural net. Conditioning on the set CAB turns
out to be the key step to obtain a meaningful graph
which is consistent with intuition (Section 2.4).

The partial spectral coherences, which are necessary
to build the graph, can easily be computed by inversion
of the spectral density matrix f(l) as it has been shown
in Dahlhaus (1995) for ordinary time series. More
precisely, let g(l)= f(l)−1 be the inverse of the spectral
matrix and

dAB(l)=
gAB(l)

((gAA(l)gBB(l))1/2.

Then it can be shown as in Theorem 3.2 of Dahlhaus
(1995) that

dAB(l)= −RAB�CAB
(l)

and

gAA(l)= fAA�CA
(l)−1,

where CA consists of all neurons except neuron A.
Using the spectral density matrix with components

estimated by Eq. (1) leads in the same way to the
estimates R. AB�C(l). These estimates are numerically
identical to the estimates one would obtain by using
(Eq. (2)) and (Eq. (3)) with the estimated spectra.
However, the latter is much more time consuming since
it requires at each l for the calculation of each of the
K(K−1)/2 partial coherences the inversion of a (K−

2)× (K−2) matrix while the former only requires at
each l the inversion of one K×K matrix.

2.3. The partial phase-spectrum

When examining the structure of a neural net, we are
interested not only in the strength of a connection,
which we can measure by the partial coherence, but
also in its direction, which is indicated by a time delay
in the transmission of signals which is due to the
propagation of action potentials along the axon of the
sending neuron and the synaptic delay. Rosenberg et al.
(1989) have shown that such a time delay in the relation
between two spike trains NA and NB is related to the
phase-spectrum fAB(l) which is defined as the argu-
ment of the cross-spectrum fAB(l). If, for example, the
process N2 is a shifted version of the process N1, i.e.
N2(t)=N1(t+u0), then we have f21(l)−u0l and the
delay u0 can be determined from the slope of the
phase-spectrum.

In the case where indirect connections may be
present, Rosenberg et al. (1989) suggested to use the
partial phase-spectrum fAB�CAB

(l) which is defined as
the argument of the partial cross-spectrum, that is

fAB�CAB
(l)=arg fAB�CAB

(l)=arg RAB�CAB
(l).

To illustrate the difference to the ordinary phase-
spectrum, we consider independent processes N1(t) and
o(t) and derived processes N2(t)=N1(t+u1)+o(t) and
N3(t)=N1(t+u2)+N2(t+u3). Here, the processes N1

and N3 are not only directly connected (with lag u2) but
also indirectly via N2 (with lag u1 + u3). Elementary
manipulations now show that

f31(l)= (e− ilu2+e− il(u1+u3))f11(l)

=e− il(u2+ (u1+u3))/2 · 2 cos(−l(u2+ (u1+u3))/2)f11(l)

and by (Eq. (3)) with f21(l)=e− ilu1f11(l) and

f32(l)=e− il(u2−u1)f11(l)+e− ilu3f22(l)

f31�2(l)=e− ilu2( f11(l)− f11(l)2/f22(l)),

which implies

f31(l)= −l(u2+ (u1+u3))/2 (4)

and

f31�2(l)= −lu2.
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Fig. 4. Estimated coherences �RAB(l)2 and phase spectra fAB(l) for the Hawkes model data. The horizontal dashed lines represent a 95% test
bound for the supremum of all coherence under the assumption that the two are uncorrelated.

The partial phase f31�2(l) is the phase one would expect
if no indirect connection were present, whereas the
ordinary phase f31(l) yields an average of the delays of
direct and indirect connections.

Eq. (4) suggests to fit a linear regression model to the
partial phase curves and to estimate the delay as the
slope of the least squares line. As the variance of the
partial phase depends on the partial coherence and
therefore is not constant, one has to use a weighted
least squares procedure as it has been described in
Rosenberg et al. (1989). We mention, that these weights
are zero at those frequencies where the partial coher-
ence is zero.

2.4. Conditional correlation graphs for multi6ariate
point processes

We now show how the partial spectral coherence can
be used to define a graph for the correlation structure
of a multivariate point process. A rather detailed dis-
cussion in the context of multivariate time series has
been given in Dahlhaus (1995). The situation for point
processes is basically the same.

Suppose we observe a multivariate point process N(t)
with components NA(t), where A=1,…,K. We identify
the components with the vertices of a graph, i.e. we
have the set of vertices V={1,…,K}. An edge between
vertices A and B is defined to be missing if the processes

NA(t) and NB(t) are uncorrelated (at all lags) after the
linear effects of all other components have been re-
moved. This is the case if and only if the partial
cross-spectrum fAB�CAB

(l) as given in (Eq. (3)) is zero
for all frequencies (Rosenberg et al., 1989). As dis-
cussed above (see also Dahlhaus, 1995, Theorem 3.2),
this means that we have no edge in the conditional
correlation graph between A and B if and only if the
corresponding component in the inverse spectral ma-
trix, gAB(l) or equivalently dAB(l), is zero for all fre-
quencies.

Suppose, for example, that we have a five dimen-
sional point process with conditional correlation graph
as given by Fig. 1. The processes N1 and N5 are then for
example uncorrelated given the linear effect of the other
neurons. Our intuition of the graph says that the depen-
dence between N1 and N5 is ‘via’ N2. Such intuitive
interpretations of the graph can be made rigorous by a
number of properties (Dahlhaus, 1995, proposition 1–
4). For example, the ‘separation theorem’ says that
whenever one variable (or a whole set of variables)
‘separates’ two other variables (or sets of variables)
then these two are uncorrelated given the separating
one. This theorem allows, for example, in the above
graph the interpretation that if N2 (or alternatively the
set {N3, N4}) is removed, then N1 and N5 are uncorre-
lated while removing N3 alone would not help.
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Fig. 5. Estimated coherences �RAB�CAB
(l)�2 and partial phase spectra fAB�CAB

(l) for the Hawkes model data. The horizontal dashed lines represent
a 95% test bound for the supremum of all partial coherences under the assumption that the two processes are uncorrelated conditional on the
other processes.

Although intuitively obvious, these properties are not
easy to prove theoretically. However, their existence
guarantees that certain probabilistic properties of the
multivariate point process are in coincidence with the
properties of the graph—thus making the conditional
correlation graph of a point process a valuable tool for
the visualization of its properties.

Given the observed point processes we use the empir-
ical spectral coherence R. AB�CAB

(l) with a test derived in
Section 2.6 below for deciding whether the edge be-
tween A and B is present. The idea is to use the
resulting estimate of the conditional correlation graph
as the basis for an estimate of the graph reflecting the
physically existing neural net.

It is not obvious whether these two graphs coincide
and what the relationship between these graphs are. In
the next section we investigate this question theoreti-
cally for a specific model of mutually exiting point
processes. This model allows for the necessary theoreti-
cal calculations but is not fully adequate for neural nets
since it neglects nonlinear dynamics such as refractory
periods after the occurrence of a spike.

2.5. The identification of directed acyclic graphs for
mutually exciting point processes

Hawkes (1971a,b) has introduced a model for mutu-

ally exciting point processes. For such a process, the
intensity vector at any time t depends linearly on the
history Ht of the process up to that instant. More
precisely, we have a multivariate point process N(t)=
(N1(t),…,NK(t))% such that its conditional intensity
function satisfies

lim
h¡0

1
h

Prob{A event in(t ,t+h ]�Ht}

=mA+ %
K

C=1

%
sC, j5 t

gAC(t−sC, j), (5)

where sC,j are the times of events of process C and
gAC(u) are some nonnegative, integrable link functions
which vanish for uB0. The constant mA here character-
izes the spontaneous activity of process NA while
gAC(t−sC,j) ·h can be interpreted as the amount by
which the probability for the occurrence of an A event
in (t, t+h ] is increased by the C events at time sC,j. The
restriction gAC(u)=0 for uB0 expresses the fact that
only events from the past can have an influence. If the
link function gAC(u) is zero for all u, which we denote
by gAC( · )f0, the process NC does not influence pro-
cess NA at all. Apart from the fact that such processes
do not allow for the modeling of refractory periods
(e.g. by setting the probability for a new A event to zero
directly after an A event has occurred), this seems to be
a reasonable model for synaptic interactions.
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Table 1
Estimated delays in milliseconds derived from the ordinary phase curves with 95% confidence intervals for the Hawkes model data

2 3ûAB 0 1 4

1 21.391.0
2 39.997.0 21.491.2

0.091.021.290.93 42.694.0
21.891.84 48.296.7 40.496.6 21.590.7

21.091.821.491.15 60.897.8 42.993.1 21.496.9

Following our intuition we denote as the real graph
the vertices {1, . . ., K} with the (directed) edge (B, A)
present if and only if gAB( · )f0 as a function. In this
case we say that B is a parent of A and A is a child of
B.

We now investigate the relations between the real
and the conditional independence graph as defined in
the last section for this model. We start by investigating
the properties of the inverse spectral matrix. For this,
let

GAC(l)=
&�

−�

gAC(u) exp(− ilu) du

be the Fourier transform of the link function gAC(u)
and G(l) be the matrix with entries GAC(l). Hawkes
(1971b) has shown that the spectral matrix of the point
process is given by

f(l)=
1

2p
{I−G(l)}−1 D{I−G(−l)%}−1,

where D is the diagonal matrix with the mean intensi-
ties p1, . . , pK in the diagonal. As a consequence, we
obtain

g(l)= f −1(l)=2p{I−G(−l)%}D−1{I−G(l)},

which yields for A"B

gAB(l)= −
2p

pA
GAB(l)−

2p

pB
GBA(−l)

+ %
K

C=1

2p

pC
GCA(−l)GCB(l). (6)

As noted in the last section we have an edge between A
and B in the conditional correlation graph if and only
if gAB( · )f0. It can now easily be seen from (Eq. (6))

that this does not imply GAB( · )f0 or GBA( · )f0, and
vice versa. Thus, the correlation graph and the real
graph do not coincide in general nor is it obvious how
the real graph can be deduced from the correlation
graph.

In particular, it may happen that gAB( · )f0 while
both GAB( · ) and GBA( · ) are zero. This occurs if NA and
NB both influence a third process NC, that is if
GCA( · )f0 and GCB( · )f0 (A and B are parents of a
joint child C). This effect, which seems to be strange
from a first point of view, is, however, quite natural. To
see this, we consider independent point processes N1,
N2 and o and their superposition N3(t)=N1(t)+
N2(t)+o(t). Then N1 and N2 are no longer independent
conditional on the process N3 and the corresponding
conditional correlation graph would show a connection
between N1 and N2.

This effect is well known for graphical models. It is
called marrying parents of a joint child and the result-
ing undirected conditional correlation graph is called
moral graph (Whittaker, 1990, Section 3.9). Formally
we define the moral graph of a directed graph as the
undirected graph containing the edge (A, B) if either
(A, B) or (B, A) is an edge in the directed graph or if A
and B are parents of a joint child C, i.e. (A, C) and
(B, C) are edges of the directed graph for some C.

Theoretically, it may also happen that an edge of the
real graph is lost in the conditional correlation graph
(i.e. gAB( · )
0 while GAB( · )f0 or GBA( · )f0). How-
ever, this requires a very specific functional relation of
the link functions which hardly occurs in practice.

Despite the problems discussed above, we are able to
obtain the real graph from the correlation graph in a
large number of situations. To see this, we consider an
acyclic directed graph which consists of a completely
ordered set of vertices, that is
1. ABB or BBA for all A, B with A"B,
2. ABA does not hold,
3. ABB and BBC implies ABC,
and satisfies the restriction that a component of the
point process may only excite its successors, that is the
link function gAB( · ) and thus GAB( · ) vanish for A=B
and ABB. Note that the assumption of a complete
ordering is equivalent to the fact that there exist no
directed cycles (Whittaker, 1990, Lemma 3.5.1). With-

Fig. 6. Estimated partial coherence �R3,4�0,1,2(l)�2 for the Hawkes
model data without process N5.
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Table 2
Estimated delays in milliseconds derived from the partial phase curves with 95% confidence intervals for the Hawkes model data

û3,1 û4,2 û5,3û1,0 û5,4û2,0 û2,1

20.891.521.191.1 21.290.920.791.1 20.190.821.391.7 20.891.3

out loss of generality we can assume that the order-
ing is the ordering of natural numbers which implies
that the matrix G(l) is zero on and above the diago-
nal for acyclic directed graphs after same reordering.
Examples of such acyclic directed graphs are the
graphs in Fig. 3.1(a) and Fig. 3.5(a).

We obtain for A\B from (Eq. (6))

gAB(l)= −
2p

pA

GAB(l)+ %
K

C=A+1

2p

pC

GCA(−l)GCB(l)

(7)

Now if A and B are not parents of a joint child, the
second term in (Eq. (7)) vanishes and we have
gAB( · )
0 if and only if GAB( · )
0.

In the complementary case where A and B have a
joint child we can show under additional assump-
tions, e.g. for the common exponential link functions

gAB(u)=aAB exp(−bAB(u−uAB)), (8)

that gAB( · )f0 (Appendix A), which corresponds to
the marrying parents effect. Thus we have proved the
following

Theorem : Suppose the real graph of the point pro-
cess model (Eq. (5)) is acyclic and the link functions
are exponential as in (Eq. (8)). Then the conditional
correlation graph coincides with the moral graph of
the point process.

Further one can show for an acyclic real graph and
exponential link functions that if A and B are not
parents of a joint child the partial phase spectrum
fulfills

(fAB�CAB
(l)

(l
B0 for all l if GAB( · )f0 (i.e. A\B)

(9)

and

(fAB�CAB
(l)

(l
\0 for all l if GBA( · )f0 (i.e. ABB).

(10)

For joint parents no assertion of this form is possi-
ble.

These results imply that an acyclic directed graph
of a model (Eq. (5)) with exponential link functions
can completely be identified (including the ordering of
the vertices) by the following

2.5.1. Identification procedure
(1) Using the partial coherences, we draw the con-

ditional correlation graph. For data, the test proce-
dure derived in Section 2.6 has to be used.

(2) We identify the direction of those connections for
which either Eq. (9) or Eq. (10) is fulfilled (here for data
a corresponding test procedure still has to be developed
—however, compare the examples in Section 3) and
which cannot be affected by a marrying parents effect.

(3) If A and B are parents of a joint child we
calculate the conditional correlation graph for the re-
duced graph obtained by deleting all successors of A
and B. It is obvious from (Eq. (7)) that in this reduced
correlation graph an edge between A and B is present if
and only if it is present in the real graph. Thus, we can
delete those edges which are due to a marrying parents
effect. The phase spectrum between A and B in the
reduced correlation graph gives the direction.

Examples for the use of this identification procedure
are given in Section 3. The steps (ii) and (iii) may be
more complicated than it seems since an edge between
A and B may not only result from a marrying parents
effect if there are edges (A, C) and (B, C) which are
directed towards C, but also if one of the edges (A, C)
and (B, C) itself is affected by a marrying parents effect
and its direction therefore is unknown.

For example in Fig. 2, the edge (B, C) may be due to
a marrying parents effect. Since its existence and also
its direction is not clear, the edge (A, C) may also be
due to a marrying parents effect. In (iii) one tests the
edge between B and C with the conditional correlation
graph of A, B and C and then (if necessary) the edge
between A and B with the conditional correlation of A
and B alone (that is by the coherence between A and
B). Testing first A and B would lead to the same result.
However, in order to get a unique result also in the
data-dependent case we suggest to start with the edges
with the highest order with respect to the ordering of
the vertices (i.e. with (B, C) in the above example).

2.6. Testing for a connection in the conditional
correlation graph

An edge in the correlation graph is defined to be
missing if the corresponding partial spectral coherence
is zero at all frequencies. However if concerned with
data, we have to use the empirical partial coherence
(calculated as described at the end of Section 2.2),
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Fig. 7. Neural networks with (a) diverging and converging synaptic connections and (b) an excitatory feedback loop.

which in this case will only be approximately zero. In
order to find a test for an edge, we therefore have to
construct a threshold for the empirical partial spectral
coherence. If the estimate �R. AB�CAB

(l)�2 exceeds that
threshold for at least one frequency, we decide that
there is an edge between A and B.

As a threshold, we take the upper a-quantile of the
asymptotic distribution of the maximum of
�R. AB�CAB

(l)�2 over all frequencies under the assumption
that the two processes NA and NB are uncorrelated after
removing the linear effects of the process NCAB

. Then
the probability of �R. AB�CAB

(l)�2exceeding this threshold
for at least one frequency is a if there is no edge
between A and B.

In order to determine this threshold, we first note
that under the assumption of RAB�CAB

(l)=0 the esti-
mate �R. AB�CAB

(l)�2 has the same limiting distribution as

�f. AB�CAB
(l)�2

fAA�CAB
(l)fBB�CAB

(l)
.

Since f. AB�CAB
(l) is a differentiable function of the spec-

tral density estimates f. CD(l) with C, D=1, . . .,K,
which are asymptotically normal (Brillinger, 1972, The-
orem 4.3), it can be shown by application of the
delta-method that the real and imaginary part of


T(�R. AB�CAB
(l)−RAB�CAB

(l))

are asymptotically independent and normally dis-
tributed with mean zero and variance sT=p(H4/H2

2)	
wT(a)2 da, where Hk=	1

0 h(x)k dx. Therefore, still un-
der the assumption of RAB�CAB

(l)=0,

T
sT

�R. AB�CAB
(l)�2

is asymptotically x2
2-distributed. Instead of the above

approximation, a normal distribution as an approxima-
tion of

tan h−1(�R. AB�CAB
(l)�2)− tan h−1(�RAB�CAB

(l)�2)
has been used frequently (Brillinger, 1981; Rosenberg et
al., 1989). However, in the case RAB�CAB

(l)=0 it seems
not to be adequate to approximate the positive distribu-
tion of tan h−1(�R. AB�CAB

(l)�2) by a normal distribution
centered around zero.

Next, we note that the products dT(l)dT(−l) and
dT(m)dT(−m) are approximately independent for large
T. Consequently, the estimates f. AB(l) and f. AB(m) are
also approximately independent if the values l and m

are separated widely enough such that the correspond-
ing smoothing intervals are non-overlapping. The same
holds then for the estimates �R. AB�CAB

(l)�2 and
�R. AB�CAB

(m)�2. This suggests to consider the maximum of
nT independent x2

2-distributed random variables, where
nT is the maximum number of frequencies l such that
the smoothing intervals of the spectral estimates do not
overlap. For the significance level a, we obtain from
this as a simultaneous upper (1−a)-test bound

sT

T
x2

2,(1−a)1/nT

where x2,p
2 denotes the p-quantile of the x2

2-distribution.
Strictly speaking this is only a threshold for the maxi-
mum of �R. AB�CAB

(l)�2 at those nT frequencies where the
spectral estimates do not overlap. It seems to be very
difficult to obtain an exact threshold for the maximum
at all frequencies (such a derivation requires a stochas-
tic process approximation, Bickel and Rosenblatt
(1973)). Furthermore, we expect only minor changes
from such an improvement.

3. Simulations

In this section we investigate the properties of the
proposed method —both for a Hawkes model and
several neural ensembles.

We start with the ideal situation of a Hawkes model
(Eq. (5)) with exponential link functions (Eq. (8)) and
the acyclic graph of Fig. 3(a). In our simulation, we
have used connections with different transmission rates
which are determined by the ratio aAB/bAB. Further, the
parameters bAB have been chosen such that the influ-
ence of a single event of process NB on process NA dies
away quickly compared with the time delay uAB.

Figs. 4 and 5 illustrate the differences between ordi-
nary coherences and phase-spectra on the one side and
partial coherences and partial phase-spectra on the
other side. The partial spectral coherences have been
calculated as described at the end of Section 2.2. The
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Fig. 8. Estimated partial coherences �RAB�CAB
(l)�2 and partial phase spectra fAB�CAB

(l) for the data simulated from the network in Fig. 7(a). The
horizontal dashed lines represent a 95% test bound for the supremum of all partial coherences under the assumption that the two processes are
uncorrelated conditional on the other processes.

horizontal dashed line is the 95% test bound for the
maximum of the ordinates as described in Section 2.6,
which means that an edge is present if the partial
spectral coherence exceeds this bound at one or more
frequencies.

The coherences in Fig. 4 show that all six processes
are pairwise coupled. Further, the linear pattern of the
phase curves indicates that the connections are domi-
nated by a time delay. Table 1 gives the estimated
delays which have been computed using a weighted
least squares algorithm (Rosenberg et al., 1989). Here,
the estimated delay of 39.997.0 ms between processes
N0 and N2 is particularly interesting because it corre-
sponds not to the weaker direct connection but to the
indirect connection via N1. Altogether, neither coher-
ences nor phase-spectra provide much information
about the structure of the network in Fig. 3.

A much better understanding of the connectivity in
the network is provided by the partial coherences (Fig.
5), which vanish in most cases where two processes are
not directly connected while they differ significantly
from zero elsewhere. For our analysis of the net, we
follow the identification procedure in Section 2.5. Fig.
3(b) shows the conditional correlation graph as it fol-
lows from the estimated partial coherences. We have
added directions for those edges where the phase spec-
trum nearly follows a straight line and which are not
potentially affected by a marrying parents effect. It is
already clear from this graph that the real graph is
acyclic. The edges between 0 and 1 and between 3 and
4 may be due to the marrying parents effect, which has
to be investigated in the corresponding reduced graphs
with all successors deleted. Thus, we have to test
�R. 3,4�0,1,2( · )�2 and �R. 0,1( · )�2 separately.

First, Fig. 6 implies that the connection between 3
and 4 is not significant and that the edge in the condi-
tional correlation graph is solely due to the marrying
parents effect. Next, Fig. 4 shows that �R. 0,1( · )�2 is
significantly different from zero. From the correspond-
ing phase-curve f. 0,1( · ), which is approximately linear,
it finally can be seen that the connection is directed
from 0 to 1.

The linear partial phases now yield estimates for the
delays of the direct connections which have been iden-
tified. The estimates given in Table 2 show that all
connections have about the same delay of 2191 ms. In
the case of processes N0 and N2, this estimate differs
significantly from that derived from the ordinary phase.
This together with the substantial reduction of the
partial coherence suggests that the indirect connection
via N1 has a predominant effect on the timing relation
between the two processes.

Although we have plotted all phase curves in this
paper for illustration, it usually makes no sense to plot
phase curves associated with non-significant (partial)
coherences. If the coherence is zero, the corresponding
phase is not defined at all and the estimate has an
infinite variance (Brillinger, 1981, Eq. (8.7.15)). In these
cases, no conclusions can be derived from the estimate
even though the actual phase curves in Fig. 5 look
smooth due to the estimation method. Caution is neces-
sary especially if the (partial) coherence is significant
only for some frequencies (as for the inhibitory connec-
tions in Fig. 12. In this situation, a visual inspection of
the phase curves over all frequencies may be misleading
as only part of the values should be used for the
determination of the time delay (which is automatically
done by the weighted least squares method of Rosen-
berg et al. (1989)).
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Fig. 9. Estimated partial coherences �RAB�CAB
(l)�2 and partial phase spectra fAB�CAB

(l) for the data simulated from the network in Fig. 7(b). The
horizontal dashed lines represent a 95% test bound for the supremum of all partial coherences under the assumption that the two processes are
uncorrelated conditional on the other processes.

We now turn to the discussion of examples of neural
spike trains which have been generated by the neural
network simulator GENESIS Version 1.4 on the basis
of the Hodgkin-Huxley ion channel model (Bower and
Beeman, 1995). The simulated networks were built of
simple nerve cells whose dynamics were derived from
measurements of the squid giant axon. In each nerve
cell, the leakage current was disturbed by random
injections of small currents in order to model the
stochastic variations of the somatic membrane poten-
tial. As neural networks typically consist of a large
number of neurons, the nerve cells were additionally
excited by Poisson point processes which represented
the stimulation due to further neurons whose spike
trains have not been recorded. Without some stochas-
ticity of this kind in the data, the identification method
would fail to distinguish direct from indirect connec-
tions since in purely deterministic systems each indirect
connection has the same effect as a direct connection
with cumulated time delay. On the other hand, if the
system is disturbed by too much noise, the connections
do not transmit enough action potentials to be iden-
tified.

Again we use the identification method from Section
2.5. Several problems may arise. In particular, it is not
clear whether the method works at all due to non-linear
dynamics in spike trains (for example due to refractory

periods). Problems may also arise if the graph is not
acyclic or if connections are inhibitory which would
correspond to negative link functions in the Hawkes
model. However, the following simulations show that
the proposed method works well despite these prob-
lems.

Fig. 7(a) illustrates part of a neural network with
diverging and converging synaptic connections. Diver-
gence and convergence of neural connections are com-
mon principles in the organization of the nervous
system. Fig. 8 shows the partial coherences and partial
phase-spectra between the spike trains recorded from
neurons 0 to 3. The partial coherences correctly identify
the four connections and the conditional correlation
graph therefore is identical to the graph. It is interesting
that the marrying parents effect does not cause an edge
between 1 and 2. Theoretically, the marrying parents
effect may also hide a connection between 1 and 2
which, however, can be excluded by looking at the
reduced graph, that is by testing �R. 1,2�0( · )�2, which in-
deed stays below the threshold (not shown in a figure).
Thus, the graph has been correctly identified. The par-
tial phase curves now yield estimates for the delays of
about 1991.5 ms.

In the next example, the data-set has been simulated
from a network of six neurons with an excitatory
feedback connection (Fig. 7(b)). Here, brief excitatory
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Fig. 10. (a) Estimated partial coherences �R04�3,5(l)�2 and (b) �R1,3�0,5(l)�2 and (c) estimated partial phase f1,3�0,5(l) for the network in Fig. 7(b).

input can produce long-lasting neural activity within
the closed loop through circulation of activity among
the neurons. Therefore, such reverberating circuits have
been used as an explanatory model for the short-term
memory. The graph is not acyclic and therefore the
assumptions underlying the results of Section 2.5 are
violated.

Fig. 9 demonstrates that the structure of the network
can be identified completely by the application of the
partial coherences and the partial spectra. A marrying
parents effect might occur between 0 and 4 (in fact the
partial coherence shows a tiny peak above the
threshold, whose significance, however, seems question-
able). Since the graph contains a cycle it is not possible
to investigate the reduced graph obtained by deleting
the joint child 1 and its successors (since 4 itself is a
successor). A reasonable procedure in this situation
seems to delete the child 1 and all successors until one
reaches an immediate predecessor of the parents and to
investigate whether this leads to an ‘adequate’ reduc-
tion of the partial coherence (what is ‘adequate’ clearly
needs further theoretical investigation). In the present
context, this means deleting 1 and 2. The resulting
�R. 0,4�3,5( · )�2 remains below the threshold (Fig. 10(a))
which is a clear indication that there is no connection
between 0 and 4. Thus, the graph has been identified
correctly. The estimated delays again are about 1991.5
ms.

Now suppose that we have recorded spike trains only
from neurons 0, 1, 3, and 5. In the reduced network,
neurons 1 and 3 are connected by two direct connec-
tions which have opposite directions. As described in
Section 2.3, we cannot resolve the full structure of the
network in this situation, which is demonstrated by Fig.
10. Here, the partial coherence �R. 1,3�0,5( · )�2 (Fig. 10(b))
correctly detects that the two neurons are directly con-
nected. The slope of the corresponding partial phase
curve (Fig. 10(c)) now indicates that impulses are trans-
mitted in the direction of neuron 3, which corresponds
to the main pathway in the network. But the partial
phase does not provide any information about the
presence of an excitatory feedback connection, and thus
we are left with an incomplete identification of the
network.

In the last example, we use the presented methods for
the identification of a neural network that includes also
inhibitory synaptic connections. Fig. 11 shows part of
the simulated network which consisted of more than 30
neurons. This arrangement of excitatory and inhibitory
connections produces lateral inhibition, which is quite
common in sensory pathways to facilitate localization
and sharpen contrast. The data-set to be analyzed
consists of eight spike trains which have been recorded
from neurons 0 to 7 (Fig. 11). The estimated partial
coherences and partial phase-spectra for this data-set
are given in Fig. 12. Comparing the results with the
structure of the network, we notice a striking difference
between excitatory and inhibitory connections. The six
excitatory connections are easy to detect since the par-
tial coherences stay well above the threshold and the
partial phase curves show clearly a linear pattern as in
the examples before, whereas in the case of inhibitory
connections the partial coherences exhibit smaller peaks
at low frequencies and vanish for frequencies above
25–30 Hz. Consequently, the corresponding partial
phase-spectra are approximately linear only over a
small range of frequencies, which makes it difficult to
estimate the delay for an inhibitory connection. Never-
theless, the direction of the inhibitory connections are
identified correctly if one uses the weighted least
squares procedure of Rosenberg et al. (1989) which
automatically restricts in the present case to low fre-Fig. 11. Neural network with lateral inhibition.
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Fig. 12. Estimated partial coherences �RAB�CAB
(l)�2 and partial phase spectra fAB�CAB

(l) for the data simulated from the network in Fig. 11. The
horizontal dashed lines represent a 95% test bound for the supremum of all partial coherences under the assumption that the two processes are
uncorrelated conditional on the other processes.

quencies. Further, we note that the partial coherences
between spike trains which are not directly linked do
not necessarily remain subthreshold for all frequencies.
For connection (0, 5) and (2, 7) this again is a marrying
parents effect which can be excluded by calculating the
partial coherences �R. 0,5�1,2,3,6( · )�2 and �R. 2,7�0,1,3,4( · )�2.
Apart from some questionable connections (e.g. (0, 2)),
the method therefore successfully identifies the graph.
However, it is clear that it is difficult to distinguish
partial coherences of inhibitory connections from par-
tial coherences where no connection is present (see Fig.
13).

4. Concluding remarks

In this paper, we have presented a conditional corre-
lation graph for the dependence structure of multivari-
ate point process. Based on this graph, a method has
been suggested to identify synaptic connections in neu-
ral ensembles. The method is based on the partial
coherence, which has been used earlier by several au-
thors to distinguish between direct and indirect connec-
tions. The simulations have demonstrated that the
method can successfully be applied in different situa-
tions of neural ensembles.

The method has several limitations. One requirement
for the method to work is that the signal to noise ratio

is neither to high nor to low. This has already been
discussed in Section 2.6. Furthermore, the method can-
not discriminate between direct connections and indi-
rect connections via unobserved neurons. Another
limitation is that the method basically is a linear one
while neural activity shows also nonlinear dynamics. It
would be interesting to investigate whether the identifi-
cation problems with the inhibitory connections are due
to nonlinear dynamics or to a low signal to noise ratio.

A lot of work remains to be done to investigate the
relations between the conditional correlation graph and
a more realistic model for neuron firing than the
Hawkes model used in Section 2.5 such as the threshold
crossing model of Brillinger and Segundo (1979). Fur-
thermore, more simulations and data examples are
necessary to study the limitations of the method. Here,
several specific situations need to be addressed, such as
inhibitory connections or the modulating effects of
external (periodic) stimulation. In addition, several spe-
cific problems have to be solved, such as the question of
a test for a direction based on the partial phase spec-
trum or the identification procedure in cyclic graphs.
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Appendix A

First, we prove that under the assumption of the
theorem in Section 2.5 gAB( · ) differs from zero
whenever A and B are parents of a joint child. For this,
we observe that since gAB( · ) is nonnegative we have
GA%B%(0)\0 if and only if gA%B%( · )f0. Now if GAB( · )

0 then by (Eq. (7)) gAB(0)\0. On the other hand, if
GAB( · )f0 and A and B have one joint child C then
with

GAB(l)=e− iluAB
aAB

bAB+ il

(Hawkes, 1971a) gAB(l)=0 would imply

pCaAB(bCA− il)(bCB+ il) e− iluAB

=pAaCAaCB(bAB+ il) e− il(uCA+uCB ),

which holds if and only if aAB=0 which contradicts
GAB( · )f0. Therefore, it must be gAB(l)"0.

Next, we prove (Eqs. (9) and (10)). If A and B are
not parents of a joint child and gAB( · )f0, we obtain
for the partial phase spectrum

fAB�CAB
(l)=arg GAB(l)= −luAB−arctan(−l/bAB)

and thus

dfAB�CAB
(l)

dl
= −uAB−

bAB

b2
AB+l2B0.

The case gBA( · )f0 is similar.

The software used for the computation of partial
coherences and partial phase-spectra has been imple-
mented in C on an UNIX-system. Enquiries about the
software should be sent to eichler@statlab.uni-heidel-
berg.de. The simulation software GENESIS is available
via anonymous FTP at babel.caltech.edu.
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